Spaces:
Configuration error
Configuration error
adiba-markovate
commited on
Commit
•
5b52224
1
Parent(s):
f82d615
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
#import sys
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
import docx2txt
|
6 |
+
from transformers import pipeline
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
|
10 |
+
def fetch_pdf_doc_file(directory):
|
11 |
+
pdf_doc_file = []
|
12 |
+
for file in os.listdir(directory):
|
13 |
+
if file.endswith('.pdf') or file.endswith('.docx'):
|
14 |
+
temp = directory + "/" +file
|
15 |
+
pdf_doc_file.append(temp)
|
16 |
+
return pdf_doc_file
|
17 |
+
|
18 |
+
# extract texts from files
|
19 |
+
def extract_text(files_list):
|
20 |
+
reader = PdfReader()
|
21 |
+
for file in files_list:
|
22 |
+
text = ""
|
23 |
+
l = len(reader.pages)
|
24 |
+
for i in range(l):
|
25 |
+
page = reader.pages[i]
|
26 |
+
text += page.extract_text()
|
27 |
+
text = text.lower()
|
28 |
+
return text
|
29 |
+
|
30 |
+
#passing text for extracting skills
|
31 |
+
pipe = pipeline("token-classification", model="algiraldohe/lm-ner-linkedin-skills-recognition")
|
32 |
+
def skill_extract(text):
|
33 |
+
output = pipe(text)
|
34 |
+
technical_words = [entry['word'] for entry in output if entry['entity'] in ['B-TECHNICAL', 'I-TECHNICAL', 'B-TECHNOLOGY', 'I-TECHNOLOGY']]
|
35 |
+
l = len(technical_words)
|
36 |
+
index = 0 # Initialize the index variable
|
37 |
+
while index < l:
|
38 |
+
if technical_words[index].startswith("##"):
|
39 |
+
half = technical_words[index][2:]
|
40 |
+
technical_words[index-1] += half
|
41 |
+
technical_words.pop(index)
|
42 |
+
l -= 1 # Decrease the length of the list
|
43 |
+
else:
|
44 |
+
index += 1 # Move to the next word
|
45 |
+
technical_words = set(technical_words)
|
46 |
+
return technical_words
|
47 |
+
|
48 |
+
|
49 |
+
# function for matching and returning skills
|
50 |
+
def match(required_skills, resume_skills):
|
51 |
+
# Convert the skills lists to sets for efficient set operations
|
52 |
+
required_skills = set(required_skills)
|
53 |
+
|
54 |
+
# Find the common skills (matching skills)
|
55 |
+
matching_skills = required_skills.intersection(resume_skills)
|
56 |
+
|
57 |
+
# Calculate the score as a percentage
|
58 |
+
score_percentage = (len(matching_skills) / len(required_skills))*100
|
59 |
+
#Find the missing skills
|
60 |
+
missing_skills = required_skills.difference(resume_skills)
|
61 |
+
return missing_skills, score_percentage
|
62 |
+
|
63 |
+
|
64 |
+
# Define the list of required skills
|
65 |
+
required_skills = ["Python", "Java", "Django", "Machine Learning", "Data Science", "Communication", 'Natural language processing (nlp)']
|
66 |
+
|
67 |
+
# Create a list to store selected skills
|
68 |
+
selected_skills = []
|
69 |
+
|
70 |
+
# Streamlit UI
|
71 |
+
st.title("TalentMatch")
|
72 |
+
st.header("Select the required skills")
|
73 |
+
|
74 |
+
# Use st.columns to create three columns
|
75 |
+
col1, col2, col3 = st.columns(3)
|
76 |
+
|
77 |
+
# Display checkboxes for each skill in three columns
|
78 |
+
for i, skill in enumerate(required_skills):
|
79 |
+
if i % 3 == 0:
|
80 |
+
checkbox = col1.checkbox(skill)
|
81 |
+
elif i % 3 == 1:
|
82 |
+
checkbox = col2.checkbox(skill)
|
83 |
+
else:
|
84 |
+
checkbox = col3.checkbox(skill)
|
85 |
+
|
86 |
+
if checkbox:
|
87 |
+
selected_skills.append(skill)
|
88 |
+
|
89 |
+
|
90 |
+
pdf_docs = st.file_uploader("upload your files and click on process", accept_multiple_files = True)
|
91 |
+
if selected_skills and pdf_docs:
|
92 |
+
if st.button("Process"):
|
93 |
+
st.write("Processing...")
|
94 |
+
|
95 |
+
|
96 |
+
result_data = []
|
97 |
+
# iterating over each file
|
98 |
+
for file in pdf_docs:
|
99 |
+
text = extract_text(pdf_docs)
|
100 |
+
print(text)
|
101 |
+
resume_skills = skill_extract(text)
|
102 |
+
missing_skills, score = match(required_skills, resume_skills)
|
103 |
+
result_data.append({"File": file, "Score": score+"%", "Missing Skills": missing_skills})
|
104 |
+
|
105 |
+
# create a dataframe
|
106 |
+
df = pd.DataFrame(result_data)
|
107 |
+
#sort the data frame according to the score
|
108 |
+
#df = df.sort_values(by = "Score", ascending = False)
|
109 |
+
|
110 |
+
# display the result table
|
111 |
+
st.subheader("Processing Completed")
|
112 |
+
st.subheader("RESULT")
|
113 |
+
st.table(df)
|
114 |
+
|
115 |
+
|
116 |
+
|