MenstrualQA / app.py
adi2606's picture
Update app.py
db93709 verified
raw
history blame
1.36 kB
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("adi2606/MenstrualQA")
tokenizer = AutoTokenizer.from_pretrained("adi2606/MenstrualQA")
# Function to generate a response from the chatbot
def generate_response(message: str, temperature: float = 0.4, repetition_penalty: float = 1.1) -> str:
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
# Generate the response
output = model.generate(
inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=512,
temperature=temperature,
repetition_penalty=repetition_penalty,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode the generated output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Streamlit app layout
st.title("Menstrual QA Chatbot")
st.write("Ask any question related to menstrual health.")
# User input
user_input = st.text_input("You:", "")
if st.button("Send"):
if user_input:
with st.spinner("Generating response..."):
response = generate_response(user_input)
st.write(f"Chatbot: {response}")
else:
st.write("Please enter a question.")