Bart-gen-arg / src /genie /scorer.py
adherent's picture
what is the <arg> in <trg>
6c25ddb
raw
history blame
11.2 kB
import os
import json
import argparse
import re
from copy import deepcopy
from collections import defaultdict
from tqdm import tqdm
import spacy
from utils import load_ontology,find_arg_span, compute_f1, get_entity_span, find_head, WhitespaceTokenizer
nlp = spacy.load('en_core_web_sm')
nlp.tokenizer = WhitespaceTokenizer(nlp.vocab)
'''
Scorer for argument extraction on ACE & KAIROS.
For the RAMS dataset, the official scorer is used.
Outputs:
Head F1
Coref F1
'''
print("scorer.py")
def clean_span(ex, span):
tokens = ex['tokens']
if tokens[span[0]].lower() in {'the', 'an', 'a'}:
if span[0]!=span[1]:
return (span[0]+1, span[1])
return span
def extract_args_from_template(ex, template, ontology_dict,):
# extract argument text
template_words = template.strip().split()
predicted_words = ex['predicted'].strip().split()
predicted_args = defaultdict(list) # each argname may have multiple participants
t_ptr= 0
p_ptr= 0
evt_type = ex['event']['event_type']
while t_ptr < len(template_words) and p_ptr < len(predicted_words):
if re.match(r'<(arg\d+)>', template_words[t_ptr]):
m = re.match(r'<(arg\d+)>', template_words[t_ptr])
arg_num = m.group(1)
try:
arg_name = ontology_dict[evt_type][arg_num]
except KeyError:
print(evt_type)
exit()
if predicted_words[p_ptr] == '<arg>':
# missing argument
p_ptr +=1
t_ptr +=1
else:
arg_start = p_ptr
while (p_ptr < len(predicted_words)) and ((t_ptr== len(template_words)-1) or (predicted_words[p_ptr] != template_words[t_ptr+1])):
p_ptr+=1
arg_text = predicted_words[arg_start:p_ptr]
predicted_args[arg_name].append(arg_text)
t_ptr+=1
# aligned
else:
t_ptr+=1
p_ptr+=1
return predicted_args
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gen-file',type=str,default='checkpoints/gen-all-ACE-freq-pred/predictions.jsonl' )
parser.add_argument('--test-file', type=str,default='data/ace/zs-freq-10/test.oneie.json')
parser.add_argument('--coref-file', type=str)
parser.add_argument('--head-only', action='store_true')
parser.add_argument('--coref', action='store_true')
parser.add_argument('--dataset',type=str, default='ACE', choices=['ACE', 'KAIROS','AIDA'])
args = parser.parse_args()
ontology_dict = load_ontology(dataset=args.dataset)
if args.dataset == 'KAIROS' and args.coref and not args.coref_file:
print('coreference file needed for the KAIROS dataset.')
raise ValueError
if args.dataset == 'AIDA' and args.coref:
raise NotImplementedError
examples = {}
doc2ex = defaultdict(list) # a document contains multiple events
with open(args.gen_file,'r') as f:
for lidx, line in enumerate(f): # this solution relies on keeping the exact same order
pred = json.loads(line.strip())
examples[lidx] = {
'predicted': pred['predicted'],
'gold': pred['gold'],
'doc_id': pred['doc_key']
}
doc2ex[pred['doc_key']].append(lidx)
with open(args.test_file, 'r') as f:
for line in f:
doc = json.loads(line.strip())
if 'sent_id' in doc.keys():
doc_id = doc['sent_id']
# print('evaluating on sentence level')
else:
doc_id = doc['doc_id']
# print('evaluating on document level')
for idx, eid in enumerate(doc2ex[doc_id]):
examples[eid]['tokens'] = doc['tokens']
examples[eid]['event'] = doc['event_mentions'][idx]
examples[eid]['entity_mentions'] = doc['entity_mentions']
coref_mapping = defaultdict(dict) # span to canonical entity_id mapping for each doc
if args.coref:
if args.dataset == 'KAIROS' and args.coref_file:
with open(args.coref_file, 'r') as f, open(args.test_file, 'r') as test_reader:
for line, test_line in zip(f, test_reader):
coref_ex = json.loads(line)
ex = json.loads(test_line)
doc_id = coref_ex['doc_key']
for cluster, name in zip(coref_ex['clusters'], coref_ex['informative_mentions']):
canonical = cluster[0]
for ent_id in cluster:
ent_span = get_entity_span(ex, ent_id)
ent_span = (ent_span[0], ent_span[1]-1)
coref_mapping[doc_id][ent_span] = canonical
# this does not include singleton clusters
else:
# for the ACE dataset
with open(args.test_file) as f:
for line in f:
doc=json.loads(line.strip())
doc_id = doc['sent_id']
for entity in doc['entity_mentions']:
mention_id = entity['id']
ent_id = '-'.join(mention_id.split('-')[:-1])
coref_mapping[doc_id][(entity['start'], entity['end']-1)] = ent_id # all indexes are inclusive
pred_arg_num =0
gold_arg_num =0
arg_idn_num =0
arg_class_num =0
arg_idn_coref_num =0
arg_class_coref_num =0
for ex in tqdm(examples.values()):
context_words = ex['tokens']
doc_id = ex['doc_id']
doc = None
if args.head_only:
doc = nlp(' '.join(context_words))
# get template
evt_type = ex['event']['event_type']
if evt_type not in ontology_dict:
continue
template = ontology_dict[evt_type]['template']
# extract argument text
predicted_args = extract_args_from_template(ex,template, ontology_dict)
# get trigger
# extract argument span
trigger_start = ex['event']['trigger']['start']
trigger_end = ex['event']['trigger']['end']
predicted_set = set()
for argname in predicted_args:
for entity in predicted_args[argname]:# this argument span is inclusive, FIXME: this might be problematic
arg_span = find_arg_span(entity, context_words,
trigger_start, trigger_end, head_only=args.head_only, doc=doc)
if arg_span:# if None means hullucination
predicted_set.add((arg_span[0], arg_span[1], evt_type, argname))
else:
new_entity = []
for w in entity:
if w == 'and' and len(new_entity) >0:
arg_span = find_arg_span(new_entity, context_words, trigger_start, trigger_end,
head_only=args.head_only, doc=doc)
if arg_span: predicted_set.add((arg_span[0], arg_span[1], evt_type, argname))
new_entity = []
else:
new_entity.append(w)
if len(new_entity) >0: # last entity
arg_span = find_arg_span(new_entity, context_words, trigger_start, trigger_end,
head_only=args.head_only, doc=doc)
if arg_span: predicted_set.add((arg_span[0], arg_span[1], evt_type, argname))
# get gold spans
gold_set = set()
gold_canonical_set = set() # set of canonical mention ids, singleton mentions will not be here
for arg in ex['event']['arguments']:
argname = arg['role']
entity_id = arg['entity_id']
span = get_entity_span(ex, entity_id)
span = (span[0], span[1]-1)
span = clean_span(ex, span)
# clean up span by removing `a` `the`
if args.head_only and span[0]!=span[1]:
span = find_head(span[0], span[1], doc=doc)
gold_set.add((span[0], span[1], evt_type, argname))
if args.coref:
if span in coref_mapping[doc_id]:
canonical_id = coref_mapping[doc_id][span]
gold_canonical_set.add((canonical_id, evt_type, argname))
pred_arg_num += len(predicted_set)
gold_arg_num += len(gold_set)
# check matches
for pred_arg in predicted_set:
arg_start, arg_end, event_type, role = pred_arg
gold_idn = {item for item in gold_set
if item[0] == arg_start and item[1] == arg_end
and item[2] == event_type}
if gold_idn:
arg_idn_num += 1
gold_class = {item for item in gold_idn if item[-1] == role}
if gold_class:
arg_class_num += 1
elif args.coref:# check coref matches
arg_start, arg_end, event_type, role = pred_arg
span = (arg_start, arg_end)
if span in coref_mapping[doc_id]:
canonical_id = coref_mapping[doc_id][span]
gold_idn_coref = {item for item in gold_canonical_set
if item[0] == canonical_id and item[1] == event_type}
if gold_idn_coref:
arg_idn_coref_num +=1
gold_class_coref = {item for item in gold_idn_coref
if item[2] == role}
if gold_class_coref:
arg_class_coref_num +=1
if args.head_only:
print('Evaluation by matching head words only....')
role_id_prec, role_id_rec, role_id_f = compute_f1(
pred_arg_num, gold_arg_num, arg_idn_num)
role_prec, role_rec, role_f = compute_f1(
pred_arg_num, gold_arg_num, arg_class_num)
print('Role identification: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_id_prec * 100.0, role_id_rec * 100.0, role_id_f * 100.0))
print('Role: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_prec * 100.0, role_rec * 100.0, role_f * 100.0))
if args.coref:
role_id_prec, role_id_rec, role_id_f = compute_f1(
pred_arg_num, gold_arg_num, arg_idn_num + arg_idn_coref_num)
role_prec, role_rec, role_f = compute_f1(
pred_arg_num, gold_arg_num, arg_class_num + arg_class_coref_num)
print('Coref Role identification: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_id_prec * 100.0, role_id_rec * 100.0, role_id_f * 100.0))
print('Coref Role: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_prec * 100.0, role_rec * 100.0, role_f * 100.0))