Bart-gen-arg / src /genie /constrained_gen.py
adherent's picture
what is the <arg> in <trg>
6c25ddb
raw
history blame
36.4 kB
import torch
import re
from torch import nn
from torch.nn import functional as F
from transformers import (
BartModel,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers.generation_utils import top_k_top_p_filtering
from typing import Iterable, List, Optional
from transformers.file_utils import ModelOutput
print("constrained.py")
class BartConstrainedGen(PreTrainedModel):
def __init__(self, config, tokenizer):
super(BartConstrainedGen, self).__init__(config)
self.config = config
self.tokenizer = tokenizer
self.transformer = BartModel.from_pretrained('facebook/bart-large')
self.register_buffer("final_logits_bias", torch.zeros((1, self.transformer.shared.num_embeddings)))
def resize_token_embeddings(self):
old_num_tokens = self.transformer.shared.num_embeddings
new_embeddings = self.transformer.resize_token_embeddings(len(self.tokenizer))
self.transformer.shared = new_embeddings
self._resize_final_logits_bias(len(self.tokenizer), old_num_tokens)
self.vocab_size = len(self.tokenizer)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int, old_num_tokens: int) -> None:
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, torch.nn.LayerNorm): # if use apex, this should be FusedLayerNorm
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def get_encoder(self):
return self.transformer.encoder
def get_output_embeddings(self):
# this method is needed for generation
vocab_size, emb_size = self.transformer.shared.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = self.transformer.shared.weight.data
return lin_layer
def prepare_inputs_for_generation(
self, decoder_input_ids, past, attention_mask, use_cache, encoder_outputs, input_embeds, encoder_input_ids, **kwargs):
return {
"input_ids": encoder_input_ids, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
"input_embeds": input_embeds,
}
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
self._force_token_ids_generation(logits, self.config.bos_token_id)
elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_ids_generation(logits, self.config.eos_token_id)
return logits
def _force_token_ids_generation(self, scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
scores[:, [x for x in range(self.config.vocab_size) if x != token_id]] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = []
for layer_past in past:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
layer_past_new = {
attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
}
reordered_past.append(layer_past_new)
return reordered_past
def convert_pointer_logits_to_lm_logits(self, pointer_logits, input_ids):
'''
pointer_logits: (batch, seq_len, input_seq_len)
input_ids: (batch, input_seq_len)
lm_logits: (batch, seq_len, vocab_size)
'''
batch_size = pointer_logits.size(0)
seq_len = pointer_logits.size(1)
input_seq_len = input_ids.size(1)
lm_logits = torch.full((batch_size, seq_len, self.vocab_size), fill_value=-1000,dtype=pointer_logits.dtype).to(pointer_logits.device)
# scatter may be technically incorrect for duplicate indexes, but not using it gets slow
index = input_ids.unsqueeze(dim=1).expand_as(pointer_logits)
lm_logits.scatter_(dim=2, index=index, src=pointer_logits)
return lm_logits
def remove_unseen(self, lm_logits, input_ids):
# input_ids (batch, seq)
seen_lm_logits = torch.full_like(lm_logits, fill_value=-1000).to(lm_logits.device) #(batch, seq, vocab)
seen_vocab = set(input_ids.reshape(-1).tolist())
for i in range(self.transformer.vocab_size):
if i in (seen_vocab):
seen_lm_logits[:, :, i] = lm_logits[:, :, i]
elif i == self.tokenizer.encode(' and', add_special_tokens=False)[0]:
seen_lm_logits[:, :, i] = lm_logits[:, :, i]
return seen_lm_logits
def forward(self, input_ids,
attention_mask=None,
encoder_outputs=None,
use_cache=False,
past_key_values=None,
decoder_input_ids=None,
decoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_embeds=None,
task=-1):
# generation
if task==-1:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
use_cache=use_cache,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
input_embeds = input_embeds,
return_dict=return_dict,)
decoder_output = outputs[0] #(batch, seq_len, hidden_dim)
if encoder_outputs==None:
encoder_outputs = outputs[1] # (batch, input_seq_len, hidden_dim)
# BaseModelOutput if return dict
if input_embeds==None:
# get encoder side embeddings
input_embeds = self.transformer.encoder.embed_tokens(input_ids) * self.transformer.encoder.embed_scale #(batch, seq_len, input_seq_len)
pointer_logits = torch.einsum('ijk,ilk->ijl', decoder_output, input_embeds) #(batch, seq_len, input_seq_len)
lm_logits = self.convert_pointer_logits_to_lm_logits(pointer_logits, input_ids)
masked_lm_loss = None
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
#training
elif task==0:
assert(decoder_input_ids!=None)
y_ids = decoder_input_ids[:, :-1]
labels = decoder_input_ids[:, 1:].clone()
labels[labels== self.tokenizer.pad_token_id] = -100
# labels are just decoder_input_ids shifted to the right by 1
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=y_ids,
decoder_attention_mask=decoder_attention_mask[:, :-1],
use_cache=False,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,)
decoder_output = outputs[0] #(batch, seq_len, hidden_dim)
encoder_output = outputs[1] # (batch, input_seq_len, hidden_dim)
# lm_logits = F.linear(decoder_output, self.transformer.shared.weight, bias=self.final_logits_bias)
# lm_logits = self.remove_unseen(lm_logits, input_ids)
# get encoder side embeddings
input_embeds = self.transformer.encoder.embed_tokens(input_ids) * self.transformer.encoder.embed_scale #(batch, seq_len, input_seq_len)
pointer_logits = torch.einsum('ijk,ilk->ijl', decoder_output, input_embeds) #(batch, seq_len, input_seq_len)
# decrease <arg> prob if neccesary
lm_logits = self.convert_pointer_logits_to_lm_logits(pointer_logits, input_ids)
outputs = (lm_logits,) + outputs[1:] # Add cache, hidden states and attention if they are here
loss_fct = nn.CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.vocab_size), labels.view(-1))
outputs = (masked_lm_loss,) + outputs
return outputs
# # this is a simplified generate class for the pointer generator taken from https://github.com/huggingface/transformers/blob/v3.1.0/src/transformers/generation_utils.py
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
max_length: Optional[int] = None,
min_length: Optional[int] = None,
do_sample: Optional[bool] = None,
early_stopping: Optional[bool] = None,
num_beams: Optional[int] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
bad_words_ids: Optional[Iterable[int]] = None,
bos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
no_repeat_ngram_size: Optional[int] = None,
num_return_sequences: Optional[int] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_start_token_id: Optional[int] = None,
use_cache: Optional[bool] = None,
**model_kwargs
) -> torch.LongTensor:
r"""
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling.
Adapted in part from `Facebook's XLM beam search code
<https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529>`__.
Apart from :obj:`input_ids` and :obj:`attention_mask`, all the arguments below will default to the value of the
attribute of the same name inside the :class:`~transformers.PretrainedConfig` of the model. The default values
indicated are the default values of those config.
Most of these parameters are explained in more detail in `this blog post
<https://huggingface.co/blog/how-to-generate>`__.
Parameters:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation. If :obj:`None` the method initializes
it as an empty :obj:`torch.LongTensor` of shape :obj:`(1,)`.
max_length (:obj:`int`, `optional`, defaults to 20):
The maximum length of the sequence to be generated.
min_length (:obj:`int`, `optional`, defaults to 10):
The minimum length of the sequence to be generated.
do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use sampling ; use greedy decoding otherwise.
early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not.
num_beams (:obj:`int`, `optional`, defaults to 1):
Number of beams for beam search. 1 means no beam search.
temperature (:obj:`float`, `optional`, defaults tp 1.0):
The value used to module the next token probabilities.
top_k (:obj:`int`, `optional`, defaults to 50):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (:obj:`float`, `optional`, defaults to 1.0):
If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or
higher are kept for generation.
repetition_penalty (:obj:`float`, `optional`, defaults to 1.0):
The parameter for repetition penalty. 1.0 means no penalty. See `this paper
<https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
bos_token_id (:obj:`int`, `optional`):
The id of the `beginning-of-sequence` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
length_penalty (:obj:`float`, `optional`, defaults to 1.0):
Exponential penalty to the length. 1.0 means no penalty.
Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in
order to encourage the model to produce longer sequences.
no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0):
If set to int > 0, all ngrams of that size can only occur once.
bad_words_ids(:obj:`List[int]`, `optional`):
List of token ids that are not allowed to be generated. In order to get the tokens of the words that
should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, add_prefix_space=True)`.
num_return_sequences(:obj:`int`, `optional`, defaults to 1):
The number of independently computed returned sequences for each element in the batch.
attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values are in ``[0, 1]``, 1 for
tokens that are not masked, and 0 for masked tokens.
If not provided, will default to a tensor the same shape as :obj:`input_ids` that masks the pad token.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_start_token_id (:obj:`int`, `optional`):
If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding.
model_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.
Return:
:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`:
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
Examples::
tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer
model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache.
outputs = model.generate(max_length=40) # do greedy decoding
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer
model = AutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache.
input_context = 'The dog'
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
for i in range(3): # 3 output sequences were generated
print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer
model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache.
input_context = 'The dog'
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True) # generate 3 candidates using sampling
for i in range(3): # 3 output sequences were generated
print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer
model = AutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from S3 and cache.
input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer
model = AutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache.
input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl
bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']]
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated
"""
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
do_sample = do_sample if do_sample is not None else self.config.do_sample
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
use_cache = use_cache if use_cache is not None else self.config.use_cache
num_beams = num_beams if num_beams is not None else self.config.num_beams
temperature = temperature if temperature is not None else self.config.temperature
top_k = top_k if top_k is not None else self.config.top_k
top_p = top_p if top_p is not None else self.config.top_p
repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
decoder_start_token_id = (
decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
)
if input_ids is not None:
batch_size = input_ids.shape[0] # overriden by the input batch_size
else:
batch_size = 1
assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer."
assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer."
assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean."
assert isinstance(use_cache, bool), "`use_cache` should be a boolean."
assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer."
assert temperature > 0, "`temperature` should be strictly positive."
assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
assert input_ids is not None or (
isinstance(bos_token_id, int) and bos_token_id >= 0
), "If input_ids is not defined, `bos_token_id` should be a positive integer."
assert pad_token_id is None or (
isinstance(pad_token_id, int) and (pad_token_id >= 0)
), "`pad_token_id` should be a positive integer."
assert (eos_token_id is None) or (
isinstance(eos_token_id, int) and (eos_token_id >= 0)
), "`eos_token_id` should be a positive integer."
assert length_penalty > 0, "`length_penalty` should be strictly positive."
assert (
isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0
), "`no_repeat_ngram_size` should be a positive integer."
assert (
isinstance(num_return_sequences, int) and num_return_sequences > 0
), "`num_return_sequences` should be a strictly positive integer."
assert (
bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"
if input_ids is None:
assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
"you should either supply a context to complete as `input_ids` input "
"or a `bos_token_id` (integer >= 0) as a first token to start the generation."
)
input_ids = torch.full(
(batch_size, 1),
bos_token_id,
dtype=torch.long,
device=next(self.parameters()).device,
)
else:
assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
# not allow to duplicate outputs when greedy decoding
if do_sample is False:
if num_beams == 1:
# no_beam_search greedy generation conditions
assert (
num_return_sequences == 1
), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1"
else:
# beam_search greedy generation conditions
assert (
num_beams >= num_return_sequences
), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"
# create attention mask if necessary
# TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140
if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids):
attention_mask = input_ids.ne(pad_token_id).long()
elif attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
# set pad_token_id to eos_token_id if not set. Important that this is done after
# attention_mask is created
if pad_token_id is None and eos_token_id is not None:
pad_token_id = eos_token_id
# current position and vocab size
if hasattr(self.config, "vocab_size"):
vocab_size = self.config.vocab_size
elif (
self.config.is_encoder_decoder
and hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "vocab_size")
):
vocab_size = self.config.decoder.vocab_size
# set effective batch size and effective batch multiplier according to do_sample
if do_sample:
effective_batch_size = batch_size * num_return_sequences
effective_batch_mult = num_return_sequences
else:
effective_batch_size = batch_size
effective_batch_mult = 1
if self.config.is_encoder_decoder:
if decoder_start_token_id is None:
# see if BOS token can be used for decoder_start_token_id
if bos_token_id is not None:
decoder_start_token_id = bos_token_id
elif hasattr(self.config, "decoder") and hasattr(self.config.decoder, "bos_token_id"):
decoder_start_token_id = self.config.decoder.bos_token_id
else:
raise ValueError(
"decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation"
)
assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self)
assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder)
# get encoder and store encoder outputs
encoder = self.get_encoder()
encoder_outputs: ModelOutput = encoder(input_ids, attention_mask=attention_mask, return_dict=True)
input_embeds = encoder.embed_tokens(input_ids) * encoder.embed_scale
# Expand input ids if num_beams > 1 or num_return_sequences > 1
if num_return_sequences > 1 or num_beams > 1:
input_ids_len = input_ids.shape[-1]
input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
attention_mask = attention_mask.unsqueeze(1).expand(
batch_size, effective_batch_mult * num_beams, input_ids_len
)
input_ids = input_ids.contiguous().view(
effective_batch_size * num_beams, input_ids_len
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
attention_mask = attention_mask.contiguous().view(
effective_batch_size * num_beams, input_ids_len
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
encoder_input_ids = input_ids
if self.config.is_encoder_decoder:
# create empty decoder_input_ids
input_ids = torch.full(
(effective_batch_size * num_beams, 1),
decoder_start_token_id,
dtype=torch.long,
device=next(self.parameters()).device,
)
cur_len = 1
assert (
batch_size == encoder_outputs.last_hidden_state.shape[0]
), f"expected encoder_outputs.last_hidden_state to have 1st dimension bs={batch_size}, got {encoder_outputs.last_hidden_state.shape[0]} "
# expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
expanded_batch_idxs = (
torch.arange(batch_size)
.view(-1, 1)
.repeat(1, num_beams * effective_batch_mult)
.view(-1)
.to(input_ids.device)
)
# expand encoder_outputs
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
0, expanded_batch_idxs
)
# save encoder_outputs in `model_kwargs`
model_kwargs["encoder_outputs"] = encoder_outputs
model_kwargs["input_embeds"] = input_embeds
model_kwargs["encoder_input_ids"] = encoder_input_ids
else:
cur_len = input_ids.shape[-1]
assert (
cur_len < max_length
), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`"
output = self._generate_no_beam_search(
input_ids,
cur_len=cur_len,
max_length=max_length,
min_length=min_length,
do_sample=do_sample,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
batch_size=effective_batch_size,
attention_mask=attention_mask,
use_cache=use_cache,
model_kwargs=model_kwargs,
)
return output
def _generate_no_beam_search(
self,
input_ids,
cur_len,
max_length,
min_length,
do_sample,
temperature,
top_k,
top_p,
repetition_penalty,
no_repeat_ngram_size,
bad_words_ids,
pad_token_id,
eos_token_id,
batch_size,
attention_mask,
use_cache,
model_kwargs,
):
"""Generate sequences for each example without beam search (num_beams == 1).
All returned sequence are generated independantly.
"""
# length of generated sentences / unfinished sentences
unfinished_sents = input_ids.new(batch_size).fill_(1)
sent_lengths = input_ids.new(batch_size).fill_(max_length)
past = None
while cur_len < max_length:
model_inputs = self.prepare_inputs_for_generation(
input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs
)
outputs = self(**model_inputs, return_dict=True)
# calling forward here
#outputs.logits (batch, seq_len, input_seq_len)
next_token_logits = outputs.logits[:, -1, :]
scores = self.postprocess_next_token_scores(
scores=next_token_logits,
input_ids=input_ids,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
cur_len=cur_len,
min_length=min_length,
max_length=max_length,
eos_token_id=eos_token_id,
repetition_penalty=repetition_penalty,
batch_size=batch_size,
num_beams=1,
)
# if model has past, then set the past variable to speed up decoding
if "past_key_values" in outputs:
past = outputs.past_key_values
elif "mems" in outputs:
past = outputs.mems
if do_sample:
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
scores = scores / temperature
# Top-p/top-k filtering
next_token_logscores = top_k_top_p_filtering(scores, top_k=top_k, top_p=top_p)
# Sample
probs = F.softmax(next_token_logscores, dim=-1)
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
# Greedy decoding
next_token = torch.argmax(next_token_logits, dim=-1)
# update generations and finished sentences
if eos_token_id is not None:
# pad finished sentences if eos_token_id exist
tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
else:
tokens_to_add = next_token
# add token and increase length by one
input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
cur_len = cur_len + 1
if eos_token_id is not None:
eos_in_sents = tokens_to_add == eos_token_id
# if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool()
sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len)
# unfinished_sents is set to zero if eos in sentence
unfinished_sents.mul_((~eos_in_sents).long())
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sents.max() == 0:
break
# extend attention_mask for new generated input if only decoder
if self.config.is_encoder_decoder is False:
attention_mask = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return input_ids
# Function from `generation_utils.py` of Transformers library
def postprocess_next_token_scores(
self,
scores,
input_ids,
no_repeat_ngram_size,
bad_words_ids,
cur_len,
min_length,
max_length,
eos_token_id,
repetition_penalty,
batch_size,
num_beams,
):
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
if repetition_penalty != 1.0:
self.enforce_repetition_penalty_(
scores,
batch_size,
num_beams,
input_ids,
repetition_penalty,
)
# set eos token prob to zero if min_length is not reached
if eos_token_id is not None and cur_len < min_length:
scores[:, eos_token_id] = -float("inf")
return scores