Bart-gen-arg / src /genie /data_module4.py
adherent's picture
Add application file
4bb803b
raw
history blame
11.3 kB
import os
import json
import jsonlines
import re
import random
from collections import defaultdict
import argparse
import transformers
from transformers import BartTokenizer
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from .data import IEDataset, my_collate
MAX_LENGTH = 424
MAX_TGT_LENGTH = 72
DOC_STRIDE = 256
print("data_module4.py")
class RAMSDataModule(pl.LightningDataModule):
def __init__(self, args):
super().__init__()
self.hparams = args
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>', ' <tgr>'])
def get_event_type(self, ex):
evt_type = []
for evt in ex['evt_triggers']:
for t in evt[2]:
evt_type.append(t[0])
return evt_type
def create_gold_gen(self, ex, ontology_dict, mark_trigger=True):
# 设置三个总列表、存放输入模板、输出模板
INPUT = []
OUTPUT = []
CONTEXT = []
evt_type = self.get_event_type(ex)[0]
context_words = [w for sent in ex['sentences'] for w in sent]
input_template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
i = len(input_template)
input_list = []
for x in range(i):
str = re.sub(r'<arg\d>', '<arg>', input_template[x])
input_list.append(str)
# 其中input_list种存放的是 原始数据中<arg1> 全部替换为 <arg> 之后的模板 下一步应该进行分词
temp = []
for x in range(i):
space_tokenized_template = input_list[x].split(' ')
temp.append(space_tokenized_template)
space_tokenized_template = []
# 其中temp中存放的都是分词后的模板 下一步对temp中的所有元素进行tokenize
tokenized_input_template = []
for x in range(len(temp)):
for w in temp[x]:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
INPUT.append(tokenized_input_template)
tokenized_input_template = []
template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
for lidx, triple in enumerate(ex['gold_evt_links']):
# 触发词 论元 论元
# 例子: "gold_evt_links":
# [[[40, 40], [33, 33], "evt089arg01victim"],
# [[40, 40], [28, 28], "evt089arg02place"]]
trigger_span, argument_span, arg_name = triple
# 第几个论元
arg_num = ontology_dict[evt_type.replace('n/a', 'unspecified')][arg_name]
# 具体论元内容 短语
arg_text = ' '.join(context_words[argument_span[0]:argument_span[1] + 1])
# 通过正则表达式的方式将模板中的每个<arg> 替换为具体的论元内容
for index in range(len(template)):
if arg_num in template[index]:
break
else:
continue
template[index] = re.sub('<{}>'.format(arg_num), arg_text, template[index])
trigger = ex['evt_triggers'][0]
if mark_trigger:
trigger_span_start = trigger[0]
trigger_span_end = trigger[1] + 2 # one for inclusion, one for extra start marker
# 触发词之前的单词
prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger[0]]), add_prefix_space=True)
# 触发词短语
tgt = self.tokenizer.tokenize(' '.join(context_words[trigger[0]: trigger[1] + 1]),
add_prefix_space=True)
# 触发词之后的单词
suffix = self.tokenizer.tokenize(' '.join(context_words[trigger[1] + 1:]), add_prefix_space=True)
context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
else:
context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
# 将context放入CONTEXT中
for w in range(i):
CONTEXT.append(context)
output_template = []
# 此时的template中已经全部替换为论元短语 这部是将<arg1> 替换为<arg>
for i in range(len(template)):
output_template.append(re.sub(r'<arg\d>', '<arg>', template[i]))
spaceout_tokenized_template = []
for i in range(len(output_template)):
spaceout_tokenized_template.append(output_template[i].split(' '))
tokenized_out_template = []
for i in range(len(spaceout_tokenized_template)):
for w in spaceout_tokenized_template[i]:
tokenized_out_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
OUTPUT.append(tokenized_out_template)
tokenized_out_template = []
return INPUT, OUTPUT, CONTEXT
def load_ontology(self):
ontology_dict = {}
with open('aida_ontology_fj-5.csv', 'r') as f:
for lidx, line in enumerate(f):
if lidx == 0: # header
continue
fields = line.strip().split(',')
if len(fields) < 2:
break
evt_type = fields[0]
if evt_type in ontology_dict.keys():
args = fields[2:]
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
else:
ontology_dict[evt_type] = {}
args = fields[2:]
ontology_dict[evt_type]['template'] = []
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
return ontology_dict
def prepare_data(self):
if not os.path.exists('span_4_preprocessed_data1'):
os.makedirs('span_4_preprocessed_data1')
ontology_dict = self.load_ontology()
# print(ontology_dict['contact.prevarication.broadcast'])
for split, f in [('train', self.hparams.train_file), ('val', self.hparams.val_file),
('test', self.hparams.test_file)]:
with open(f, 'r') as reader, open('span_4_preprocessed_data1/{}.jsonl'.format(split), 'w') as writer:
for lidx, line in enumerate(reader):
ex = json.loads(line.strip())
input_template, output_template, context = self.create_gold_gen(ex, ontology_dict,
self.hparams.mark_trigger)
ontology_dict = self.load_ontology()
length = len(input_template)
# print(input_template)
# print(output_template)
# print(context)
for i in range(length):
input_tokens = self.tokenizer.encode_plus(input_template[i], context[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
# target_tokens
tgt_tokens = self.tokenizer.encode_plus(output_template[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_TGT_LENGTH,
truncation=True,
padding='max_length')
# input_ids 单词在词典中的编码
# tgt_tokens 指定对哪些词进行self_attention操作
processed_ex = {
# 'idx': lidx,
'doc_key': ex['doc_key'],
'input_token_ids': input_tokens['input_ids'],
'input_attn_mask': input_tokens['attention_mask'],
'tgt_token_ids': tgt_tokens['input_ids'],
'tgt_attn_mask': tgt_tokens['attention_mask'],
}
#print(processed_ex)
writer.write(json.dumps(processed_ex) + "\n")
def train_dataloader(self):
dataset = IEDataset('span_4_preprocessed_data1/train.jsonl')
dataloader = DataLoader(dataset,
pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.train_batch_size,
shuffle=True)
return dataloader
def val_dataloader(self):
dataset = IEDataset('span_4_preprocessed_data1/val.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
def test_dataloader(self):
dataset = IEDataset('span_4_preprocessed_data1/test.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file', type=str, default='data/RAMS_1.0/data/train.jsonlines')
parser.add_argument('--val-file', type=str, default='data/RAMS_1.0/data/dev.jsonlines')
parser.add_argument('--test-file', type=str, default='data/RAMS_1.0/data/test.jsonlines')
parser.add_argument('--train_batch_size', type=int, default=2)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--mark-trigger', action='store_true', default=True)
args = parser.parse_args()
dm = RAMSDataModule(args=args)
dm.prepare_data()
# training dataloader
dataloader = dm.train_dataloader()
for idx, batch in enumerate(dataloader):
print(batch)
break
# val dataloader