adfly450 commited on
Commit
311789b
·
verified ·
1 Parent(s): 59f79c6

Upload 4 files

Browse files
Files changed (4) hide show
  1. arcface_onnx.py +91 -0
  2. face_align.py +141 -0
  3. main.py +57 -0
  4. scrfd.py +329 -0
arcface_onnx.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Organization : insightface.ai
3
+ # @Author : Jia Guo
4
+ # @Time : 2021-05-04
5
+ # @Function :
6
+
7
+ import numpy as np
8
+ import cv2
9
+ import onnx
10
+ import onnxruntime
11
+ import face_align
12
+
13
+ __all__ = [
14
+ 'ArcFaceONNX',
15
+ ]
16
+
17
+
18
+ class ArcFaceONNX:
19
+ def __init__(self, model_file=None, session=None):
20
+ assert model_file is not None
21
+ self.model_file = model_file
22
+ self.session = session
23
+ self.taskname = 'recognition'
24
+ find_sub = False
25
+ find_mul = False
26
+ model = onnx.load(self.model_file)
27
+ graph = model.graph
28
+ for nid, node in enumerate(graph.node[:8]):
29
+ #print(nid, node.name)
30
+ if node.name.startswith('Sub') or node.name.startswith('_minus'):
31
+ find_sub = True
32
+ if node.name.startswith('Mul') or node.name.startswith('_mul'):
33
+ find_mul = True
34
+ if find_sub and find_mul:
35
+ #mxnet arcface model
36
+ input_mean = 0.0
37
+ input_std = 1.0
38
+ else:
39
+ input_mean = 127.5
40
+ input_std = 127.5
41
+ self.input_mean = input_mean
42
+ self.input_std = input_std
43
+ #print('input mean and std:', self.input_mean, self.input_std)
44
+ if self.session is None:
45
+ self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider'])
46
+ input_cfg = self.session.get_inputs()[0]
47
+ input_shape = input_cfg.shape
48
+ input_name = input_cfg.name
49
+ self.input_size = tuple(input_shape[2:4][::-1])
50
+ self.input_shape = input_shape
51
+ outputs = self.session.get_outputs()
52
+ output_names = []
53
+ for out in outputs:
54
+ output_names.append(out.name)
55
+ self.input_name = input_name
56
+ self.output_names = output_names
57
+ assert len(self.output_names)==1
58
+ self.output_shape = outputs[0].shape
59
+
60
+ def prepare(self, ctx_id, **kwargs):
61
+ if ctx_id<0:
62
+ self.session.set_providers(['CPUExecutionProvider'])
63
+
64
+ def get(self, img, kps):
65
+ aimg = face_align.norm_crop(img, landmark=kps, image_size=self.input_size[0])
66
+ embedding = self.get_feat(aimg).flatten()
67
+ return embedding
68
+
69
+ def compute_sim(self, feat1, feat2):
70
+ from numpy.linalg import norm
71
+ feat1 = feat1.ravel()
72
+ feat2 = feat2.ravel()
73
+ sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2))
74
+ return sim
75
+
76
+ def get_feat(self, imgs):
77
+ if not isinstance(imgs, list):
78
+ imgs = [imgs]
79
+ input_size = self.input_size
80
+
81
+ blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size,
82
+ (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
83
+ net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
84
+ return net_out
85
+
86
+ def forward(self, batch_data):
87
+ blob = (batch_data - self.input_mean) / self.input_std
88
+ net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
89
+ return net_out
90
+
91
+
face_align.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from skimage import transform as trans
4
+
5
+ src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
6
+ [51.157, 89.050], [57.025, 89.702]],
7
+ dtype=np.float32)
8
+ #<--left
9
+ src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
10
+ [45.177, 86.190], [64.246, 86.758]],
11
+ dtype=np.float32)
12
+
13
+ #---frontal
14
+ src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
15
+ [42.463, 87.010], [69.537, 87.010]],
16
+ dtype=np.float32)
17
+
18
+ #-->right
19
+ src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
20
+ [48.167, 86.758], [67.236, 86.190]],
21
+ dtype=np.float32)
22
+
23
+ #-->right profile
24
+ src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
25
+ [55.388, 89.702], [61.257, 89.050]],
26
+ dtype=np.float32)
27
+
28
+ src = np.array([src1, src2, src3, src4, src5])
29
+ src_map = {112: src, 224: src * 2}
30
+
31
+ arcface_src = np.array(
32
+ [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
33
+ [41.5493, 92.3655], [70.7299, 92.2041]],
34
+ dtype=np.float32)
35
+
36
+ arcface_src = np.expand_dims(arcface_src, axis=0)
37
+
38
+ # In[66]:
39
+
40
+
41
+ # lmk is prediction; src is template
42
+ def estimate_norm(lmk, image_size=112, mode='arcface'):
43
+ assert lmk.shape == (5, 2)
44
+ tform = trans.SimilarityTransform()
45
+ lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
46
+ min_M = []
47
+ min_index = []
48
+ min_error = float('inf')
49
+ if mode == 'arcface':
50
+ if image_size == 112:
51
+ src = arcface_src
52
+ else:
53
+ src = float(image_size) / 112 * arcface_src
54
+ else:
55
+ src = src_map[image_size]
56
+ for i in np.arange(src.shape[0]):
57
+ tform.estimate(lmk, src[i])
58
+ M = tform.params[0:2, :]
59
+ results = np.dot(M, lmk_tran.T)
60
+ results = results.T
61
+ error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
62
+ # print(error)
63
+ if error < min_error:
64
+ min_error = error
65
+ min_M = M
66
+ min_index = i
67
+ return min_M, min_index
68
+
69
+
70
+ def norm_crop(img, landmark, image_size=112, mode='arcface'):
71
+ M, pose_index = estimate_norm(landmark, image_size, mode)
72
+ warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
73
+ return warped
74
+
75
+ def square_crop(im, S):
76
+ if im.shape[0] > im.shape[1]:
77
+ height = S
78
+ width = int(float(im.shape[1]) / im.shape[0] * S)
79
+ scale = float(S) / im.shape[0]
80
+ else:
81
+ width = S
82
+ height = int(float(im.shape[0]) / im.shape[1] * S)
83
+ scale = float(S) / im.shape[1]
84
+ resized_im = cv2.resize(im, (width, height))
85
+ det_im = np.zeros((S, S, 3), dtype=np.uint8)
86
+ det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
87
+ return det_im, scale
88
+
89
+
90
+ def transform(data, center, output_size, scale, rotation):
91
+ scale_ratio = scale
92
+ rot = float(rotation) * np.pi / 180.0
93
+ #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
94
+ t1 = trans.SimilarityTransform(scale=scale_ratio)
95
+ cx = center[0] * scale_ratio
96
+ cy = center[1] * scale_ratio
97
+ t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
98
+ t3 = trans.SimilarityTransform(rotation=rot)
99
+ t4 = trans.SimilarityTransform(translation=(output_size / 2,
100
+ output_size / 2))
101
+ t = t1 + t2 + t3 + t4
102
+ M = t.params[0:2]
103
+ cropped = cv2.warpAffine(data,
104
+ M, (output_size, output_size),
105
+ borderValue=0.0)
106
+ return cropped, M
107
+
108
+
109
+ def trans_points2d(pts, M):
110
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
111
+ for i in range(pts.shape[0]):
112
+ pt = pts[i]
113
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
114
+ new_pt = np.dot(M, new_pt)
115
+ #print('new_pt', new_pt.shape, new_pt)
116
+ new_pts[i] = new_pt[0:2]
117
+
118
+ return new_pts
119
+
120
+
121
+ def trans_points3d(pts, M):
122
+ scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
123
+ #print(scale)
124
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
125
+ for i in range(pts.shape[0]):
126
+ pt = pts[i]
127
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
128
+ new_pt = np.dot(M, new_pt)
129
+ #print('new_pt', new_pt.shape, new_pt)
130
+ new_pts[i][0:2] = new_pt[0:2]
131
+ new_pts[i][2] = pts[i][2] * scale
132
+
133
+ return new_pts
134
+
135
+
136
+ def trans_points(pts, M):
137
+ if pts.shape[1] == 2:
138
+ return trans_points2d(pts, M)
139
+ else:
140
+ return trans_points3d(pts, M)
141
+
main.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ import os
4
+ import os.path as osp
5
+ import argparse
6
+ import cv2
7
+ import numpy as np
8
+ import onnxruntime
9
+ from scrfd import SCRFD
10
+ from arcface_onnx import ArcFaceONNX
11
+
12
+ onnxruntime.set_default_logger_severity(5)
13
+
14
+ assets_dir = osp.expanduser('~/.insightface/models/buffalo_l')
15
+
16
+ detector = SCRFD(os.path.join(assets_dir, 'det_10g.onnx'))
17
+ detector.prepare(0)
18
+ model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
19
+ rec = ArcFaceONNX(model_path)
20
+ rec.prepare(0)
21
+
22
+ def parse_args() -> argparse.Namespace:
23
+ parser = argparse.ArgumentParser()
24
+ parser.add_argument('img1', type=str)
25
+ parser.add_argument('img2', type=str)
26
+ return parser.parse_args()
27
+
28
+
29
+ def func(args):
30
+ image1 = cv2.imread(args.img1)
31
+ image2 = cv2.imread(args.img2)
32
+ bboxes1, kpss1 = detector.autodetect(image1, max_num=1)
33
+ if bboxes1.shape[0]==0:
34
+ return -1.0, "Face not found in Image-1"
35
+ bboxes2, kpss2 = detector.autodetect(image2, max_num=1)
36
+ if bboxes2.shape[0]==0:
37
+ return -1.0, "Face not found in Image-2"
38
+ kps1 = kpss1[0]
39
+ kps2 = kpss2[0]
40
+ feat1 = rec.get(image1, kps1)
41
+ feat2 = rec.get(image2, kps2)
42
+ sim = rec.compute_sim(feat1, feat2)
43
+ if sim<0.2:
44
+ conclu = 'They are NOT the same person'
45
+ elif sim>=0.2 and sim<0.28:
46
+ conclu = 'They are LIKELY TO be the same person'
47
+ else:
48
+ conclu = 'They ARE the same person'
49
+ return sim, conclu
50
+
51
+
52
+
53
+ if __name__ == '__main__':
54
+ args = parse_args()
55
+ output = func(args)
56
+ print('sim: %.4f, message: %s'%(output[0], output[1]))
57
+
scrfd.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from __future__ import division
3
+ import datetime
4
+ import numpy as np
5
+ #import onnx
6
+ import onnxruntime
7
+ import os
8
+ import os.path as osp
9
+ import cv2
10
+ import sys
11
+
12
+ def softmax(z):
13
+ assert len(z.shape) == 2
14
+ s = np.max(z, axis=1)
15
+ s = s[:, np.newaxis] # necessary step to do broadcasting
16
+ e_x = np.exp(z - s)
17
+ div = np.sum(e_x, axis=1)
18
+ div = div[:, np.newaxis] # dito
19
+ return e_x / div
20
+
21
+ def distance2bbox(points, distance, max_shape=None):
22
+ """Decode distance prediction to bounding box.
23
+
24
+ Args:
25
+ points (Tensor): Shape (n, 2), [x, y].
26
+ distance (Tensor): Distance from the given point to 4
27
+ boundaries (left, top, right, bottom).
28
+ max_shape (tuple): Shape of the image.
29
+
30
+ Returns:
31
+ Tensor: Decoded bboxes.
32
+ """
33
+ x1 = points[:, 0] - distance[:, 0]
34
+ y1 = points[:, 1] - distance[:, 1]
35
+ x2 = points[:, 0] + distance[:, 2]
36
+ y2 = points[:, 1] + distance[:, 3]
37
+ if max_shape is not None:
38
+ x1 = x1.clamp(min=0, max=max_shape[1])
39
+ y1 = y1.clamp(min=0, max=max_shape[0])
40
+ x2 = x2.clamp(min=0, max=max_shape[1])
41
+ y2 = y2.clamp(min=0, max=max_shape[0])
42
+ return np.stack([x1, y1, x2, y2], axis=-1)
43
+
44
+ def distance2kps(points, distance, max_shape=None):
45
+ """Decode distance prediction to bounding box.
46
+
47
+ Args:
48
+ points (Tensor): Shape (n, 2), [x, y].
49
+ distance (Tensor): Distance from the given point to 4
50
+ boundaries (left, top, right, bottom).
51
+ max_shape (tuple): Shape of the image.
52
+
53
+ Returns:
54
+ Tensor: Decoded bboxes.
55
+ """
56
+ preds = []
57
+ for i in range(0, distance.shape[1], 2):
58
+ px = points[:, i%2] + distance[:, i]
59
+ py = points[:, i%2+1] + distance[:, i+1]
60
+ if max_shape is not None:
61
+ px = px.clamp(min=0, max=max_shape[1])
62
+ py = py.clamp(min=0, max=max_shape[0])
63
+ preds.append(px)
64
+ preds.append(py)
65
+ return np.stack(preds, axis=-1)
66
+
67
+ class SCRFD:
68
+ def __init__(self, model_file=None, session=None):
69
+ import onnxruntime
70
+ self.model_file = model_file
71
+ self.session = session
72
+ self.taskname = 'detection'
73
+ self.batched = False
74
+ if self.session is None:
75
+ assert self.model_file is not None
76
+ assert osp.exists(self.model_file)
77
+ self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider'])
78
+ self.center_cache = {}
79
+ self.nms_thresh = 0.4
80
+ self.det_thresh = 0.5
81
+ self._init_vars()
82
+
83
+ def _init_vars(self):
84
+ input_cfg = self.session.get_inputs()[0]
85
+ input_shape = input_cfg.shape
86
+ #print(input_shape)
87
+ if isinstance(input_shape[2], str):
88
+ self.input_size = None
89
+ else:
90
+ self.input_size = tuple(input_shape[2:4][::-1])
91
+ #print('image_size:', self.image_size)
92
+ input_name = input_cfg.name
93
+ self.input_shape = input_shape
94
+ outputs = self.session.get_outputs()
95
+ if len(outputs[0].shape) == 3:
96
+ self.batched = True
97
+ output_names = []
98
+ for o in outputs:
99
+ output_names.append(o.name)
100
+ self.input_name = input_name
101
+ self.output_names = output_names
102
+ self.input_mean = 127.5
103
+ self.input_std = 128.0
104
+ #print(self.output_names)
105
+ #assert len(outputs)==10 or len(outputs)==15
106
+ self.use_kps = False
107
+ self._anchor_ratio = 1.0
108
+ self._num_anchors = 1
109
+ if len(outputs)==6:
110
+ self.fmc = 3
111
+ self._feat_stride_fpn = [8, 16, 32]
112
+ self._num_anchors = 2
113
+ elif len(outputs)==9:
114
+ self.fmc = 3
115
+ self._feat_stride_fpn = [8, 16, 32]
116
+ self._num_anchors = 2
117
+ self.use_kps = True
118
+ elif len(outputs)==10:
119
+ self.fmc = 5
120
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
121
+ self._num_anchors = 1
122
+ elif len(outputs)==15:
123
+ self.fmc = 5
124
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
125
+ self._num_anchors = 1
126
+ self.use_kps = True
127
+
128
+ def prepare(self, ctx_id, **kwargs):
129
+ if ctx_id<0:
130
+ self.session.set_providers(['CPUExecutionProvider'])
131
+ nms_thresh = kwargs.get('nms_thresh', None)
132
+ if nms_thresh is not None:
133
+ self.nms_thresh = nms_thresh
134
+ det_thresh = kwargs.get('det_thresh', None)
135
+ if det_thresh is not None:
136
+ self.det_thresh = det_thresh
137
+ input_size = kwargs.get('input_size', None)
138
+ if input_size is not None:
139
+ if self.input_size is not None:
140
+ print('warning: det_size is already set in scrfd model, ignore')
141
+ else:
142
+ self.input_size = input_size
143
+
144
+ def forward(self, img, threshold):
145
+ scores_list = []
146
+ bboxes_list = []
147
+ kpss_list = []
148
+ input_size = tuple(img.shape[0:2][::-1])
149
+ blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
150
+ net_outs = self.session.run(self.output_names, {self.input_name : blob})
151
+
152
+ input_height = blob.shape[2]
153
+ input_width = blob.shape[3]
154
+ fmc = self.fmc
155
+ for idx, stride in enumerate(self._feat_stride_fpn):
156
+ # If model support batch dim, take first output
157
+ if self.batched:
158
+ scores = net_outs[idx][0]
159
+ bbox_preds = net_outs[idx + fmc][0]
160
+ bbox_preds = bbox_preds * stride
161
+ if self.use_kps:
162
+ kps_preds = net_outs[idx + fmc * 2][0] * stride
163
+ # If model doesn't support batching take output as is
164
+ else:
165
+ scores = net_outs[idx]
166
+ bbox_preds = net_outs[idx + fmc]
167
+ bbox_preds = bbox_preds * stride
168
+ if self.use_kps:
169
+ kps_preds = net_outs[idx + fmc * 2] * stride
170
+
171
+ height = input_height // stride
172
+ width = input_width // stride
173
+ K = height * width
174
+ key = (height, width, stride)
175
+ if key in self.center_cache:
176
+ anchor_centers = self.center_cache[key]
177
+ else:
178
+ #solution-1, c style:
179
+ #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
180
+ #for i in range(height):
181
+ # anchor_centers[i, :, 1] = i
182
+ #for i in range(width):
183
+ # anchor_centers[:, i, 0] = i
184
+
185
+ #solution-2:
186
+ #ax = np.arange(width, dtype=np.float32)
187
+ #ay = np.arange(height, dtype=np.float32)
188
+ #xv, yv = np.meshgrid(np.arange(width), np.arange(height))
189
+ #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
190
+
191
+ #solution-3:
192
+ anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
193
+ #print(anchor_centers.shape)
194
+
195
+ anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
196
+ if self._num_anchors>1:
197
+ anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
198
+ if len(self.center_cache)<100:
199
+ self.center_cache[key] = anchor_centers
200
+
201
+ pos_inds = np.where(scores>=threshold)[0]
202
+ bboxes = distance2bbox(anchor_centers, bbox_preds)
203
+ pos_scores = scores[pos_inds]
204
+ pos_bboxes = bboxes[pos_inds]
205
+ scores_list.append(pos_scores)
206
+ bboxes_list.append(pos_bboxes)
207
+ if self.use_kps:
208
+ kpss = distance2kps(anchor_centers, kps_preds)
209
+ #kpss = kps_preds
210
+ kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
211
+ pos_kpss = kpss[pos_inds]
212
+ kpss_list.append(pos_kpss)
213
+ return scores_list, bboxes_list, kpss_list
214
+
215
+ def detect(self, img, input_size = None, thresh=None, max_num=0, metric='default'):
216
+ assert input_size is not None or self.input_size is not None
217
+ input_size = self.input_size if input_size is None else input_size
218
+
219
+ im_ratio = float(img.shape[0]) / img.shape[1]
220
+ model_ratio = float(input_size[1]) / input_size[0]
221
+ if im_ratio>model_ratio:
222
+ new_height = input_size[1]
223
+ new_width = int(new_height / im_ratio)
224
+ else:
225
+ new_width = input_size[0]
226
+ new_height = int(new_width * im_ratio)
227
+ det_scale = float(new_height) / img.shape[0]
228
+ resized_img = cv2.resize(img, (new_width, new_height))
229
+ det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
230
+ det_img[:new_height, :new_width, :] = resized_img
231
+ det_thresh = thresh if thresh is not None else self.det_thresh
232
+
233
+ scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh)
234
+
235
+ scores = np.vstack(scores_list)
236
+ scores_ravel = scores.ravel()
237
+ order = scores_ravel.argsort()[::-1]
238
+ bboxes = np.vstack(bboxes_list) / det_scale
239
+ if self.use_kps:
240
+ kpss = np.vstack(kpss_list) / det_scale
241
+ pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
242
+ pre_det = pre_det[order, :]
243
+ keep = self.nms(pre_det)
244
+ det = pre_det[keep, :]
245
+ if self.use_kps:
246
+ kpss = kpss[order,:,:]
247
+ kpss = kpss[keep,:,:]
248
+ else:
249
+ kpss = None
250
+ if max_num > 0 and det.shape[0] > max_num:
251
+ area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
252
+ det[:, 1])
253
+ img_center = img.shape[0] // 2, img.shape[1] // 2
254
+ offsets = np.vstack([
255
+ (det[:, 0] + det[:, 2]) / 2 - img_center[1],
256
+ (det[:, 1] + det[:, 3]) / 2 - img_center[0]
257
+ ])
258
+ offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
259
+ if metric=='max':
260
+ values = area
261
+ else:
262
+ values = area - offset_dist_squared * 2.0 # some extra weight on the centering
263
+ bindex = np.argsort(
264
+ values)[::-1] # some extra weight on the centering
265
+ bindex = bindex[0:max_num]
266
+ det = det[bindex, :]
267
+ if kpss is not None:
268
+ kpss = kpss[bindex, :]
269
+ return det, kpss
270
+
271
+ def autodetect(self, img, max_num=0, metric='max'):
272
+ bboxes, kpss = self.detect(img, input_size=(640, 640), thresh=0.5)
273
+ bboxes2, kpss2 = self.detect(img, input_size=(128, 128), thresh=0.5)
274
+ bboxes_all = np.concatenate([bboxes, bboxes2], axis=0)
275
+ kpss_all = np.concatenate([kpss, kpss2], axis=0)
276
+ keep = self.nms(bboxes_all)
277
+ det = bboxes_all[keep,:]
278
+ kpss = kpss_all[keep,:]
279
+ if max_num > 0 and det.shape[0] > max_num:
280
+ area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
281
+ det[:, 1])
282
+ img_center = img.shape[0] // 2, img.shape[1] // 2
283
+ offsets = np.vstack([
284
+ (det[:, 0] + det[:, 2]) / 2 - img_center[1],
285
+ (det[:, 1] + det[:, 3]) / 2 - img_center[0]
286
+ ])
287
+ offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
288
+ if metric=='max':
289
+ values = area
290
+ else:
291
+ values = area - offset_dist_squared * 2.0 # some extra weight on the centering
292
+ bindex = np.argsort(
293
+ values)[::-1] # some extra weight on the centering
294
+ bindex = bindex[0:max_num]
295
+ det = det[bindex, :]
296
+ if kpss is not None:
297
+ kpss = kpss[bindex, :]
298
+ return det, kpss
299
+
300
+ def nms(self, dets):
301
+ thresh = self.nms_thresh
302
+ x1 = dets[:, 0]
303
+ y1 = dets[:, 1]
304
+ x2 = dets[:, 2]
305
+ y2 = dets[:, 3]
306
+ scores = dets[:, 4]
307
+
308
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
309
+ order = scores.argsort()[::-1]
310
+
311
+ keep = []
312
+ while order.size > 0:
313
+ i = order[0]
314
+ keep.append(i)
315
+ xx1 = np.maximum(x1[i], x1[order[1:]])
316
+ yy1 = np.maximum(y1[i], y1[order[1:]])
317
+ xx2 = np.minimum(x2[i], x2[order[1:]])
318
+ yy2 = np.minimum(y2[i], y2[order[1:]])
319
+
320
+ w = np.maximum(0.0, xx2 - xx1 + 1)
321
+ h = np.maximum(0.0, yy2 - yy1 + 1)
322
+ inter = w * h
323
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
324
+
325
+ inds = np.where(ovr <= thresh)[0]
326
+ order = order[inds + 1]
327
+
328
+ return keep
329
+