Anant Desai commited on
Commit
93861ec
β€’
1 Parent(s): 4348c4d

comment out examples

Browse files
Files changed (1) hide show
  1. app.py +20 -16
app.py CHANGED
@@ -1,4 +1,4 @@
1
- ### 1. Imports and class names setup ###
2
  import gradio as gr
3
  import os
4
  import torch
@@ -8,14 +8,14 @@ from timeit import default_timer as timer
8
  from typing import Tuple, Dict
9
 
10
  # Setup class names
11
- with open("class_names.txt", "r") as f: # reading them in from class_names.txt
12
- class_names = [food_name.strip() for food_name in f.readlines()]
13
-
14
- ### 2. Model and transforms preparation ###
15
 
16
  # Create model
17
  effnetb2, effnetb2_transforms = create_effnetb2_model(
18
- num_classes=101, # could also use len(class_names)
19
  )
20
 
21
  # Load saved weights
@@ -29,41 +29,45 @@ effnetb2.load_state_dict(
29
  ### 3. Predict function ###
30
 
31
  # Create predict function
 
 
32
  def predict(img) -> Tuple[Dict, float]:
33
  """Transforms and performs a prediction on img and returns prediction and time taken.
34
  """
35
  # Start the timer
36
  start_time = timer()
37
-
38
  # Transform the target image and add a batch dimension
39
  img = effnetb2_transforms(img).unsqueeze(0)
40
-
41
  # Put model into evaluation mode and turn on inference mode
42
  effnetb2.eval()
43
  with torch.inference_mode():
44
  # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
45
  pred_probs = torch.softmax(effnetb2(img), dim=1)
46
-
47
  # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
48
- pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
49
-
 
50
  # Calculate the prediction time
51
  pred_time = round(timer() - start_time, 5)
52
-
53
- # Return the prediction dictionary and prediction time
54
  return pred_labels_and_probs, pred_time
55
 
56
  ### 4. Gradio app ###
57
 
 
58
  # Create title, description and article strings
59
  title = "FoodVision Big πŸ”πŸ‘"
60
  description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
61
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
62
 
63
  # Create examples list from "examples/" directory
64
- example_list = [["examples/" + example] for example in os.listdir("examples")]
65
 
66
- # Create Gradio interface
67
  demo = gr.Interface(
68
  fn=predict,
69
  inputs=gr.Image(type="pil"),
@@ -71,7 +75,7 @@ demo = gr.Interface(
71
  gr.Label(num_top_classes=5, label="Predictions"),
72
  gr.Number(label="Prediction time (s)"),
73
  ],
74
- examples=example_list,
75
  title=title,
76
  description=description,
77
  article=article,
 
1
+ ### 1. Imports and class names setup ###
2
  import gradio as gr
3
  import os
4
  import torch
 
8
  from typing import Tuple, Dict
9
 
10
  # Setup class names
11
+ with open("class_names.txt", "r") as f: # reading them in from class_names.txt
12
+ class_names = [food_name.strip() for food_name in f.readlines()]
13
+
14
+ ### 2. Model and transforms preparation ###
15
 
16
  # Create model
17
  effnetb2, effnetb2_transforms = create_effnetb2_model(
18
+ num_classes=101, # could also use len(class_names)
19
  )
20
 
21
  # Load saved weights
 
29
  ### 3. Predict function ###
30
 
31
  # Create predict function
32
+
33
+
34
  def predict(img) -> Tuple[Dict, float]:
35
  """Transforms and performs a prediction on img and returns prediction and time taken.
36
  """
37
  # Start the timer
38
  start_time = timer()
39
+
40
  # Transform the target image and add a batch dimension
41
  img = effnetb2_transforms(img).unsqueeze(0)
42
+
43
  # Put model into evaluation mode and turn on inference mode
44
  effnetb2.eval()
45
  with torch.inference_mode():
46
  # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
47
  pred_probs = torch.softmax(effnetb2(img), dim=1)
48
+
49
  # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
50
+ pred_labels_and_probs = {class_names[i]: float(
51
+ pred_probs[0][i]) for i in range(len(class_names))}
52
+
53
  # Calculate the prediction time
54
  pred_time = round(timer() - start_time, 5)
55
+
56
+ # Return the prediction dictionary and prediction time
57
  return pred_labels_and_probs, pred_time
58
 
59
  ### 4. Gradio app ###
60
 
61
+
62
  # Create title, description and article strings
63
  title = "FoodVision Big πŸ”πŸ‘"
64
  description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
65
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
66
 
67
  # Create examples list from "examples/" directory
68
+ # example_list = [["examples/" + example] for example in os.listdir("examples")]
69
 
70
+ # Create Gradio interface
71
  demo = gr.Interface(
72
  fn=predict,
73
  inputs=gr.Image(type="pil"),
 
75
  gr.Label(num_top_classes=5, label="Predictions"),
76
  gr.Number(label="Prediction time (s)"),
77
  ],
78
+ # examples=example_list,
79
  title=title,
80
  description=description,
81
  article=article,