Spaces:
Sleeping
Sleeping
Anant Desai
commited on
Commit
β’
93861ec
1
Parent(s):
4348c4d
comment out examples
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
### 1. Imports and class names setup ###
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
@@ -8,14 +8,14 @@ from timeit import default_timer as timer
|
|
8 |
from typing import Tuple, Dict
|
9 |
|
10 |
# Setup class names
|
11 |
-
with open("class_names.txt", "r") as f:
|
12 |
-
class_names = [food_name.strip() for food_name in
|
13 |
-
|
14 |
-
### 2. Model and transforms preparation ###
|
15 |
|
16 |
# Create model
|
17 |
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
18 |
-
num_classes=101,
|
19 |
)
|
20 |
|
21 |
# Load saved weights
|
@@ -29,41 +29,45 @@ effnetb2.load_state_dict(
|
|
29 |
### 3. Predict function ###
|
30 |
|
31 |
# Create predict function
|
|
|
|
|
32 |
def predict(img) -> Tuple[Dict, float]:
|
33 |
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
34 |
"""
|
35 |
# Start the timer
|
36 |
start_time = timer()
|
37 |
-
|
38 |
# Transform the target image and add a batch dimension
|
39 |
img = effnetb2_transforms(img).unsqueeze(0)
|
40 |
-
|
41 |
# Put model into evaluation mode and turn on inference mode
|
42 |
effnetb2.eval()
|
43 |
with torch.inference_mode():
|
44 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
45 |
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
46 |
-
|
47 |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
48 |
-
pred_labels_and_probs = {class_names[i]: float(
|
49 |
-
|
|
|
50 |
# Calculate the prediction time
|
51 |
pred_time = round(timer() - start_time, 5)
|
52 |
-
|
53 |
-
# Return the prediction dictionary and prediction time
|
54 |
return pred_labels_and_probs, pred_time
|
55 |
|
56 |
### 4. Gradio app ###
|
57 |
|
|
|
58 |
# Create title, description and article strings
|
59 |
title = "FoodVision Big ππ"
|
60 |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
|
61 |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
62 |
|
63 |
# Create examples list from "examples/" directory
|
64 |
-
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
65 |
|
66 |
-
# Create Gradio interface
|
67 |
demo = gr.Interface(
|
68 |
fn=predict,
|
69 |
inputs=gr.Image(type="pil"),
|
@@ -71,7 +75,7 @@ demo = gr.Interface(
|
|
71 |
gr.Label(num_top_classes=5, label="Predictions"),
|
72 |
gr.Number(label="Prediction time (s)"),
|
73 |
],
|
74 |
-
examples=example_list,
|
75 |
title=title,
|
76 |
description=description,
|
77 |
article=article,
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
|
|
8 |
from typing import Tuple, Dict
|
9 |
|
10 |
# Setup class names
|
11 |
+
with open("class_names.txt", "r") as f: # reading them in from class_names.txt
|
12 |
+
class_names = [food_name.strip() for food_name in f.readlines()]
|
13 |
+
|
14 |
+
### 2. Model and transforms preparation ###
|
15 |
|
16 |
# Create model
|
17 |
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
18 |
+
num_classes=101, # could also use len(class_names)
|
19 |
)
|
20 |
|
21 |
# Load saved weights
|
|
|
29 |
### 3. Predict function ###
|
30 |
|
31 |
# Create predict function
|
32 |
+
|
33 |
+
|
34 |
def predict(img) -> Tuple[Dict, float]:
|
35 |
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
36 |
"""
|
37 |
# Start the timer
|
38 |
start_time = timer()
|
39 |
+
|
40 |
# Transform the target image and add a batch dimension
|
41 |
img = effnetb2_transforms(img).unsqueeze(0)
|
42 |
+
|
43 |
# Put model into evaluation mode and turn on inference mode
|
44 |
effnetb2.eval()
|
45 |
with torch.inference_mode():
|
46 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
47 |
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
48 |
+
|
49 |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
50 |
+
pred_labels_and_probs = {class_names[i]: float(
|
51 |
+
pred_probs[0][i]) for i in range(len(class_names))}
|
52 |
+
|
53 |
# Calculate the prediction time
|
54 |
pred_time = round(timer() - start_time, 5)
|
55 |
+
|
56 |
+
# Return the prediction dictionary and prediction time
|
57 |
return pred_labels_and_probs, pred_time
|
58 |
|
59 |
### 4. Gradio app ###
|
60 |
|
61 |
+
|
62 |
# Create title, description and article strings
|
63 |
title = "FoodVision Big ππ"
|
64 |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
|
65 |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
66 |
|
67 |
# Create examples list from "examples/" directory
|
68 |
+
# example_list = [["examples/" + example] for example in os.listdir("examples")]
|
69 |
|
70 |
+
# Create Gradio interface
|
71 |
demo = gr.Interface(
|
72 |
fn=predict,
|
73 |
inputs=gr.Image(type="pil"),
|
|
|
75 |
gr.Label(num_top_classes=5, label="Predictions"),
|
76 |
gr.Number(label="Prediction time (s)"),
|
77 |
],
|
78 |
+
# examples=example_list,
|
79 |
title=title,
|
80 |
description=description,
|
81 |
article=article,
|