Spaces:
Runtime error
Runtime error
Add screenshot text location feature
Browse filesAlso add option to try more detailed captioning.
- app.py +99 -24
- assets/localization_example_1.jpeg +0 -0
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
-
from transformers import FuyuForCausalLM, AutoTokenizer
|
4 |
-
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
|
5 |
-
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
|
6 |
from PIL import Image
|
|
|
7 |
|
8 |
model_id = "adept/fuyu-8b"
|
9 |
dtype = torch.bfloat16
|
@@ -13,36 +12,89 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
13 |
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
|
14 |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
def resize_to_max(image, max_width=1080, max_height=1080):
|
19 |
-
width, height = image.size
|
20 |
-
if width <= max_width and height <= max_height:
|
21 |
-
return image
|
22 |
-
|
23 |
-
scale = min(max_width/width, max_height/height)
|
24 |
-
width = int(width*scale)
|
25 |
-
height = int(height*scale)
|
26 |
-
|
27 |
-
return image.resize((width, height), Image.LANCZOS)
|
28 |
|
29 |
def predict(image, prompt):
|
30 |
# image = image.convert('RGB')
|
31 |
-
image = resize_to_max(image)
|
32 |
-
|
33 |
model_inputs = processor(text=prompt, images=[image])
|
34 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
35 |
|
36 |
-
generation_output = model.generate(**model_inputs, max_new_tokens=
|
37 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
38 |
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
|
39 |
|
40 |
-
def caption(image):
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def set_example_image(example: list) -> dict:
|
44 |
return gr.Image.update(value=example[0])
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
css = """
|
@@ -88,21 +140,44 @@ with gr.Blocks(css=css) as demo:
|
|
88 |
|
89 |
with gr.Tab("Image Captioning"):
|
90 |
with gr.Row():
|
91 |
-
|
|
|
|
|
92 |
captioning_output = gr.Textbox(label="Output")
|
93 |
captioning_btn = gr.Button("Generate Caption")
|
94 |
|
95 |
gr.Examples(
|
96 |
-
[["assets/captioning_example_1.png"], ["assets/captioning_example_2.png"]],
|
97 |
-
inputs = [captioning_input],
|
98 |
outputs = [captioning_output],
|
99 |
fn=caption,
|
100 |
cache_examples=True,
|
101 |
label='Click on any Examples below to get captioning results quickly π'
|
102 |
)
|
103 |
|
104 |
-
captioning_btn.click(fn=caption, inputs=captioning_input, outputs=captioning_output)
|
105 |
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
demo.launch(server_name="0.0.0.0")
|
|
|
1 |
import gradio as gr
|
2 |
+
import re
|
3 |
import torch
|
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
+
from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor
|
6 |
|
7 |
model_id = "adept/fuyu-8b"
|
8 |
dtype = torch.bfloat16
|
|
|
12 |
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
|
13 |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
|
14 |
|
15 |
+
CAPTION_PROMPT = "Generate a coco-style caption.\n"
|
16 |
+
DETAILED_CAPTION_PROMPT = "What is happening in this image?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def predict(image, prompt):
|
19 |
# image = image.convert('RGB')
|
|
|
|
|
20 |
model_inputs = processor(text=prompt, images=[image])
|
21 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
22 |
|
23 |
+
generation_output = model.generate(**model_inputs, max_new_tokens=50)
|
24 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
25 |
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
|
26 |
|
27 |
+
def caption(image, detailed_captioning):
|
28 |
+
if detailed_captioning:
|
29 |
+
caption_prompt = DETAILED_CAPTION_PROMPT
|
30 |
+
else:
|
31 |
+
caption_prompt = CAPTION_PROMPT
|
32 |
+
return predict(image, caption_prompt).lstrip()
|
33 |
|
34 |
def set_example_image(example: list) -> dict:
|
35 |
return gr.Image.update(value=example[0])
|
36 |
|
37 |
+
def scale_factor_to_fit(original_size, target_size=(1920, 1080)):
|
38 |
+
width, height = original_size
|
39 |
+
max_width, max_height = target_size
|
40 |
+
if width <= max_width and height <= max_height:
|
41 |
+
return 1.0
|
42 |
+
return min(max_width/width, max_height/height)
|
43 |
+
|
44 |
+
def tokens_to_box(tokens, original_size):
|
45 |
+
bbox_start = tokenizer.convert_tokens_to_ids("<0x00>")
|
46 |
+
bbox_end = tokenizer.convert_tokens_to_ids("<0x01>")
|
47 |
+
try:
|
48 |
+
# Assumes a single box
|
49 |
+
bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item()
|
50 |
+
bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item()
|
51 |
+
|
52 |
+
if bbox_end_pos != bbox_start_pos + 5:
|
53 |
+
return tokens
|
54 |
+
|
55 |
+
# Retrieve transformed coordinates from tokens
|
56 |
+
coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos])
|
57 |
+
|
58 |
+
# Scale back to original image size and multiply by 2
|
59 |
+
scale = scale_factor_to_fit(original_size)
|
60 |
+
top, left, bottom, right = [2 * int(float(c)/scale) for c in coords]
|
61 |
+
|
62 |
+
# Replace the IDs so they get detokenized right
|
63 |
+
replacement = f" <box>{top}, {left}, {bottom}, {right}</box>"
|
64 |
+
replacement = tokenizer.tokenize(replacement)[1:]
|
65 |
+
replacement = tokenizer.convert_tokens_to_ids(replacement)
|
66 |
+
replacement = torch.tensor(replacement).to(tokens)
|
67 |
+
|
68 |
+
tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0)
|
69 |
+
return tokens
|
70 |
+
except:
|
71 |
+
gr.Error("Can't convert tokens.")
|
72 |
+
return tokens
|
73 |
+
|
74 |
+
def coords_from_response(response):
|
75 |
+
# y1, x1, y2, x2
|
76 |
+
pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"
|
77 |
+
|
78 |
+
match = re.search(pattern, response)
|
79 |
+
if match:
|
80 |
+
# Unpack and change order
|
81 |
+
y1, x1, y2, x2 = [int(coord) for coord in match.groups()]
|
82 |
+
return (x1, y1, x2, y2)
|
83 |
+
else:
|
84 |
+
gr.Error("The string is malformed or does not match the expected pattern.")
|
85 |
+
|
86 |
+
def localize(image, query):
|
87 |
+
prompt= f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}"
|
88 |
+
model_inputs = processor(text=prompt, images=[image])
|
89 |
+
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
90 |
+
|
91 |
+
generation_output = model.generate(**model_inputs, max_new_tokens=40)
|
92 |
+
prompt_len = model_inputs["input_ids"].shape[-1]
|
93 |
+
tokens = generation_output[0][prompt_len:]
|
94 |
+
tokens = tokens_to_box(tokens, image.size)
|
95 |
+
decoded = tokenizer.decode(tokens, skip_special_tokens=True)
|
96 |
+
coords = coords_from_response(decoded)
|
97 |
+
return image, [(coords, f"Location of \"{query}\"")]
|
98 |
|
99 |
|
100 |
css = """
|
|
|
140 |
|
141 |
with gr.Tab("Image Captioning"):
|
142 |
with gr.Row():
|
143 |
+
with gr.Column():
|
144 |
+
captioning_input = gr.Image(label="Upload your Image", type="pil")
|
145 |
+
detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning")
|
146 |
captioning_output = gr.Textbox(label="Output")
|
147 |
captioning_btn = gr.Button("Generate Caption")
|
148 |
|
149 |
gr.Examples(
|
150 |
+
[["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]],
|
151 |
+
inputs = [captioning_input, detailed_captioning_checkbox],
|
152 |
outputs = [captioning_output],
|
153 |
fn=caption,
|
154 |
cache_examples=True,
|
155 |
label='Click on any Examples below to get captioning results quickly π'
|
156 |
)
|
157 |
|
158 |
+
captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output)
|
159 |
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
|
160 |
|
161 |
+
with gr.Tab("Find Text in Screenshots"):
|
162 |
+
gr.Markdown("This demo is designed to locate text in desktop screenshots. Please, ensure to upload images of 1920x1080 for best results!")
|
163 |
+
with gr.Row():
|
164 |
+
with gr.Column():
|
165 |
+
localization_input = gr.Image(label="Upload your Image", type="pil")
|
166 |
+
query_input = gr.Textbox(label="Text to find")
|
167 |
+
localization_btn = gr.Button("Locate Text")
|
168 |
+
with gr.Column():
|
169 |
+
with gr.Row(height=800):
|
170 |
+
localization_output = gr.AnnotatedImage(label="Text Position")
|
171 |
+
|
172 |
+
gr.Examples(
|
173 |
+
[["assets/localization_example_1.jpeg", "Share your repair"]],
|
174 |
+
inputs = [localization_input, query_input],
|
175 |
+
outputs = [localization_output],
|
176 |
+
fn=localize,
|
177 |
+
cache_examples=True,
|
178 |
+
label='Click on any Examples below to get localization results quickly π'
|
179 |
+
)
|
180 |
+
|
181 |
+
localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output)
|
182 |
|
183 |
demo.launch(server_name="0.0.0.0")
|
assets/localization_example_1.jpeg
ADDED