Spaces:
Sleeping
Sleeping
adeelshuaib
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,91 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
client = InferenceClient(model="meta-llama/Llama-3.2-3B")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
+
# Import required libraries
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import gradio as gr
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
from speechbrain.pretrained import Tacotron2, HIFIGAN, EncoderDecoderASR
|
7 |
|
8 |
+
# Load Hugging Face psychometric model
|
9 |
+
psych_model_name = "KevSun/Personality_LM" # Big Five personality traits
|
10 |
+
psych_model = pipeline("text-classification", model=psych_model_name)
|
|
|
11 |
|
12 |
+
# Load ASR model
|
13 |
+
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-rnnlm-librispeech", savedir="tmp_asr")
|
14 |
|
15 |
+
# Load TTS model
|
16 |
+
tts_model = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmp_tts")
|
17 |
+
voc_model = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmp_voc")
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Psychometric Test Questions
|
20 |
+
text_questions = [
|
21 |
+
"How do you handle criticism?",
|
22 |
+
"Describe a time when you overcame a challenge.",
|
23 |
+
"What motivates you to work hard?"
|
24 |
+
]
|
25 |
|
26 |
+
audio_questions = [
|
27 |
+
"What does teamwork mean to you?",
|
28 |
+
"How do you handle stressful situations?"
|
29 |
+
]
|
30 |
|
31 |
+
# Function to analyze text response
|
32 |
+
def analyze_text_responses(responses):
|
33 |
+
analysis = [psych_model(response)[0] for response in responses]
|
34 |
+
traits = {response["label"]: response["score"] for response in analysis}
|
35 |
+
return traits
|
36 |
|
37 |
+
# Function to handle TTS
|
38 |
+
def generate_audio_question(question):
|
39 |
+
mel_output, alignment, _ = tts_model.encode_text(question)
|
40 |
+
waveforms = voc_model.decode_batch(mel_output)
|
41 |
+
return waveforms[0].numpy()
|
|
|
|
|
|
|
42 |
|
43 |
+
# Function to process audio response
|
44 |
+
def process_audio_response(audio):
|
45 |
+
text_response = asr_model.transcribe_file(audio)
|
46 |
+
return text_response
|
47 |
|
48 |
+
# Gradio interface functions
|
49 |
+
def text_part(candidate_name, responses):
|
50 |
+
traits = analyze_text_responses(responses)
|
51 |
+
df = pd.DataFrame(traits.items(), columns=["Trait", "Score"])
|
52 |
+
plt.figure(figsize=(8, 6))
|
53 |
+
plt.bar(df["Trait"], df["Score"], color="skyblue")
|
54 |
+
plt.title(f"Psychometric Analysis for {candidate_name}")
|
55 |
+
plt.xlabel("Traits")
|
56 |
+
plt.ylabel("Score")
|
57 |
+
plt.xticks(rotation=45)
|
58 |
+
plt.tight_layout()
|
59 |
+
return df, plt
|
60 |
|
61 |
+
def audio_part(candidate_name, audio_responses):
|
62 |
+
text_responses = [process_audio_response(audio) for audio in audio_responses]
|
63 |
+
traits = analyze_text_responses(text_responses)
|
64 |
+
df = pd.DataFrame(traits.items(), columns=["Trait", "Score"])
|
65 |
+
plt.figure(figsize=(8, 6))
|
66 |
+
plt.bar(df["Trait"], df["Score"], color="lightcoral")
|
67 |
+
plt.title(f"Audio Psychometric Analysis for {candidate_name}")
|
68 |
+
plt.xlabel("Traits")
|
69 |
+
plt.ylabel("Score")
|
70 |
+
plt.xticks(rotation=45)
|
71 |
+
plt.tight_layout()
|
72 |
+
return df, plt
|
73 |
+
|
74 |
+
# Gradio UI
|
75 |
+
def chat_interface(candidate_name, text_responses, audio_responses):
|
76 |
+
text_df, text_plot = text_part(candidate_name, text_responses)
|
77 |
+
audio_df, audio_plot = audio_part(candidate_name, audio_responses)
|
78 |
+
return text_df, text_plot, audio_df, audio_plot
|
79 |
|
80 |
+
text_inputs = [gr.Textbox(label=f"Response to Q{i+1}: {q}") for i, q in enumerate(text_questions)]
|
81 |
+
audio_inputs = [gr.Audio(label=f"Response to Q{i+1}: {q}", type="file") for i, q in enumerate(audio_questions)]
|
82 |
+
|
83 |
+
interface = gr.Interface(
|
84 |
+
fn=chat_interface,
|
85 |
+
inputs=[gr.Textbox(label="Candidate Name")] + text_inputs + audio_inputs,
|
86 |
+
outputs=["dataframe", "plot", "dataframe", "plot"],
|
87 |
+
title="Psychometric Analysis Chatbot"
|
88 |
+
)
|
89 |
|
90 |
+
# Launch chatbot
|
91 |
+
interface.launch()
|