AgriBot / app.py
adeelshuaib's picture
Update app.py
d11b9b3 verified
raw
history blame
2.98 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from gtts import gTTS
import os
# Load the AgriQBot model from Hugging Face using the transformers library
tokenizer = AutoTokenizer.from_pretrained("mrSoul7766/AgriQBot")
model = AutoModelForSeq2SeqLM.from_pretrained("mrSoul7766/AgriQBot")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
"""
Respond to user queries using the AgriQBot model.
Args:
- message: User query (string).
- history: List of previous (user, assistant) message pairs.
- system_message: System-level instructions for the assistant.
- max_tokens: Maximum number of tokens in the response.
- temperature: Controls randomness in response.
- top_p: Controls diversity of the response.
Returns:
- Response string as the chatbot's answer.
"""
messages = [{"role": "system", "content": system_message}]
# Construct the conversation history
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Append the current user message
messages.append({"role": "user", "content": message})
# Tokenize the input and generate the response
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(**inputs, max_length=max_tokens, temperature=temperature, top_p=top_p)
# Decode the response and return it
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def text_to_voice(response):
"""
Convert the response text to speech using Google Text-to-Speech.
Args:
- response: Text response from the model to be converted to speech.
"""
tts = gTTS(text=response, lang='en')
tts.save("response.mp3")
os.system("start response.mp3") # Use 'open' for macOS, 'xdg-open' for Linux
# Build the Gradio Interface
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(value="You are a friendly farming assistant. Answer the user's questions related to farming.", label="System Message"),
gr.Textbox(label="Enter your question about farming:"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
outputs=[
gr.Textbox(label="Chatbot Response"),
gr.Audio(value="response.mp3", label="Audio Response")
],
title="Farming Assistant Chatbot",
description="Ask questions about farming, crop management, pest control, soil conditions, and best agricultural practices."
)
# Launch the interface
if __name__ == "__main__":
demo.launch()