subo server32 completo al Space
Browse files- Dockerfile +19 -18
- __pycache__/server1.cpython-311.pyc +0 -0
- modelos.xlsx +0 -0
- precalcular_modelos.py +25 -0
- precalcular_text_embeddings_h14_excel.py +29 -0
- requirements.txt +5 -10
- server1.py +18 -23
- text_embeddings_b16.pt +3 -0
- text_embeddings_modelos_b16.pt +3 -0
- versiones_coche.xlsx +0 -0
Dockerfile
CHANGED
|
@@ -1,32 +1,33 @@
|
|
| 1 |
FROM python:3.11-slim
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 5 |
-
build-essential git &&
|
|
|
|
| 6 |
|
| 7 |
WORKDIR /app
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
ENV HF_HOME=/app/.cache \
|
| 11 |
-
HF_HUB_CACHE=/app/.cache \
|
| 12 |
-
XDG_CACHE_HOME=/app/.cache \
|
| 13 |
-
OPENCLIP_CACHE_DIR=/app/.cache \
|
| 14 |
-
TORCH_HOME=/app/.cache/torch
|
| 15 |
-
RUN mkdir -p /app/.cache /app/.cache/torch
|
| 16 |
-
|
| 17 |
COPY requirements.txt ./
|
| 18 |
RUN pip install --upgrade pip && pip install -r requirements.txt
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
COPY server1.py .
|
| 21 |
COPY text_embeddings_h14.pt .
|
| 22 |
COPY text_embeddings_modelos_h14.pt .
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
import open_clip
|
| 27 |
-
open_clip.create_model_and_transforms('ViT-H-14', pretrained='laion2b_s32b_b79k', cache_dir="/app/.cache")
|
| 28 |
-
print("Pesos cacheados en /app/.cache")
|
| 29 |
-
PY
|
| 30 |
|
| 31 |
-
|
| 32 |
-
CMD ["python", "-m", "uvicorn", "server1:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
|
|
|
| 1 |
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
# Configuraci贸n b谩sica
|
| 4 |
+
ENV PIP_NO_CACHE_DIR=1 \
|
| 5 |
+
PYTHONDONTWRITEBYTECODE=1 \
|
| 6 |
+
PYTHONUNBUFFERED=1
|
| 7 |
|
| 8 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 9 |
+
build-essential git && \
|
| 10 |
+
rm -rf /var/lib/apt/lists/*
|
| 11 |
|
| 12 |
WORKDIR /app
|
| 13 |
|
| 14 |
+
# Instalar dependencias
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
COPY requirements.txt ./
|
| 16 |
RUN pip install --upgrade pip && pip install -r requirements.txt
|
| 17 |
|
| 18 |
+
# (Opcional) descargar un modelo m谩s ligero para que Render free no muera
|
| 19 |
+
RUN python - <<'PY'
|
| 20 |
+
import open_clip
|
| 21 |
+
open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai')
|
| 22 |
+
print("Pesos descargados")
|
| 23 |
+
PY
|
| 24 |
+
|
| 25 |
+
# Copiar c贸digo y pesos
|
| 26 |
COPY server1.py .
|
| 27 |
COPY text_embeddings_h14.pt .
|
| 28 |
COPY text_embeddings_modelos_h14.pt .
|
| 29 |
|
| 30 |
+
# Render usa PORT
|
| 31 |
+
ENV PORT=8080
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
CMD ["uvicorn", "server1:app", "--host", "0.0.0.0", "--port", "8080"]
|
|
|
__pycache__/server1.cpython-311.pyc
ADDED
|
Binary file (7.11 kB). View file
|
|
|
modelos.xlsx
ADDED
|
Binary file (11.9 kB). View file
|
|
|
precalcular_modelos.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# precalcular_modelos_b16.py
|
| 2 |
+
import torch
|
| 3 |
+
import open_clip
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
# Solo marca + modelo
|
| 7 |
+
df = pd.read_excel("modelos.xlsx")
|
| 8 |
+
textos = (df["Marca"] + " " + df["Modelo"]).tolist()
|
| 9 |
+
|
| 10 |
+
MODEL_NAME = "ViT-B-16"
|
| 11 |
+
PRETRAINED = "openai"
|
| 12 |
+
|
| 13 |
+
model, _, _ = open_clip.create_model_and_transforms(MODEL_NAME, pretrained=PRETRAINED)
|
| 14 |
+
tokenizer = open_clip.get_tokenizer(MODEL_NAME)
|
| 15 |
+
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
model = model.to(device)
|
| 18 |
+
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
text_inputs = tokenizer(textos).to(device) # tensor en GPU o CPU
|
| 21 |
+
text_features = model.encode_text(text_inputs)
|
| 22 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 23 |
+
|
| 24 |
+
torch.save({"embeddings": text_features.cpu(), "labels": textos}, "text_embeddings_modelos_b16.pt")
|
| 25 |
+
print("Embeddings de modelos guardados en 'text_embeddings_modelos_b16.pt'")
|
precalcular_text_embeddings_h14_excel.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# precalcular_text_embeddings_b16_excel.py
|
| 2 |
+
import torch
|
| 3 |
+
import open_clip
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
# Leer el Excel
|
| 7 |
+
df = pd.read_excel("versiones_coche.xlsx")
|
| 8 |
+
|
| 9 |
+
# Crear los textos combinando marca, modelo y versi贸n
|
| 10 |
+
def combinar_filas(row):
|
| 11 |
+
if pd.isna(row["Version"]) or not row["Version"]:
|
| 12 |
+
return f'{row["Marca"]} {row["Modelo"]}'
|
| 13 |
+
return f'{row["Marca"]} {row["Modelo"]} {row["Version"]}'
|
| 14 |
+
|
| 15 |
+
textos = df.apply(combinar_filas, axis=1).tolist()
|
| 16 |
+
|
| 17 |
+
# Cargar modelo
|
| 18 |
+
model, _, _ = open_clip.create_model_and_transforms('ViT-B-16', pretrained='laion2b_s34b_b88k')
|
| 19 |
+
tokenizer = open_clip.get_tokenizer('ViT-B-16')
|
| 20 |
+
|
| 21 |
+
# Calcular embeddings
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
text_inputs = tokenizer(textos)
|
| 24 |
+
text_features = model.encode_text(text_inputs)
|
| 25 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 26 |
+
|
| 27 |
+
# Guardar
|
| 28 |
+
torch.save({'embeddings': text_features, 'labels': textos}, 'text_embeddings_b16.pt')
|
| 29 |
+
print("Embeddings de texto guardados en 'text_embeddings_b16.pt'")
|
requirements.txt
CHANGED
|
@@ -1,12 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
# Resto
|
| 7 |
-
fastapi==0.111.0
|
| 8 |
-
uvicorn[standard]==0.30.1
|
| 9 |
pillow
|
| 10 |
open_clip_torch
|
| 11 |
-
timm
|
| 12 |
-
huggingface-hub
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
pillow
|
| 6 |
open_clip_torch
|
| 7 |
+
timm
|
|
|
server1.py
CHANGED
|
@@ -9,28 +9,28 @@ from typing import Optional
|
|
| 9 |
|
| 10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
-
# Cargar modelo CLIP
|
| 13 |
clip_model, _, preprocess = open_clip.create_model_and_transforms(
|
| 14 |
-
|
| 15 |
)
|
| 16 |
clip_model = clip_model.to(DEVICE)
|
| 17 |
clip_model.eval()
|
| 18 |
-
for
|
| 19 |
-
|
| 20 |
|
| 21 |
-
# Cargar embeddings
|
| 22 |
-
|
|
|
|
| 23 |
model_labels = model_ckpt["labels"]
|
| 24 |
model_embeddings = model_ckpt["embeddings"].to(DEVICE)
|
| 25 |
model_embeddings /= model_embeddings.norm(dim=-1, keepdim=True)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
version_ckpt = torch.load("text_embeddings_h14.pt", map_location=DEVICE)
|
| 29 |
version_labels = version_ckpt["labels"]
|
| 30 |
version_embeddings = version_ckpt["embeddings"].to(DEVICE)
|
| 31 |
version_embeddings /= version_embeddings.norm(dim=-1, keepdim=True)
|
| 32 |
|
| 33 |
-
# Transformaci贸n de imagen
|
| 34 |
normalize = next(t for t in preprocess.transforms if isinstance(t, transforms.Normalize))
|
| 35 |
transform = transforms.Compose([
|
| 36 |
transforms.Resize((224, 224)),
|
|
@@ -47,10 +47,7 @@ def predict_top(text_feats, text_labels, image_tensor, topk=3):
|
|
| 47 |
similarity = (100.0 * image_features @ text_feats.T).softmax(dim=-1)
|
| 48 |
topk_result = torch.topk(similarity[0], k=topk)
|
| 49 |
return [
|
| 50 |
-
{
|
| 51 |
-
"label": text_labels[idx],
|
| 52 |
-
"confidence": round(conf.item() * 100, 2)
|
| 53 |
-
}
|
| 54 |
for conf, idx in zip(topk_result.values, topk_result.indices)
|
| 55 |
]
|
| 56 |
|
|
@@ -63,10 +60,12 @@ def process_image(image_bytes: bytes):
|
|
| 63 |
modelo_predecido = top_model["label"]
|
| 64 |
confianza_modelo = top_model["confidence"]
|
| 65 |
|
| 66 |
-
# Separar marca y modelo
|
| 67 |
-
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
# Paso 2:
|
| 70 |
versiones_filtradas = [
|
| 71 |
(label, idx) for idx, label in enumerate(version_labels)
|
| 72 |
if label.startswith(modelo_predecido)
|
|
@@ -80,15 +79,14 @@ def process_image(image_bytes: bytes):
|
|
| 80 |
"version": "No se encontraron versiones para este modelo"
|
| 81 |
}
|
| 82 |
|
| 83 |
-
#
|
| 84 |
indices_versiones = [idx for _, idx in versiones_filtradas]
|
| 85 |
versiones_labels = [label for label, _ in versiones_filtradas]
|
| 86 |
versiones_embeds = version_embeddings[indices_versiones]
|
| 87 |
|
| 88 |
-
# Paso 3: predecir versi贸n dentro de las versiones del modelo
|
| 89 |
top_version = predict_top(versiones_embeds, versiones_labels, img_tensor, topk=1)[0]
|
| 90 |
version_predicha = (
|
| 91 |
-
top_version["label"].replace(modelo_predecido + " ", "")
|
| 92 |
if top_version["confidence"] >= 25
|
| 93 |
else "Versi贸n no identificada con suficiente confianza"
|
| 94 |
)
|
|
@@ -101,13 +99,10 @@ def process_image(image_bytes: bytes):
|
|
| 101 |
"confianza_version": top_version["confidence"]
|
| 102 |
}
|
| 103 |
|
| 104 |
-
|
| 105 |
@app.post("/predict/")
|
| 106 |
async def predict(front: UploadFile = File(...), back: Optional[UploadFile] = File(None)):
|
| 107 |
front_bytes = await front.read()
|
| 108 |
if back:
|
| 109 |
-
_ = await back.read()
|
| 110 |
result = process_image(front_bytes)
|
| 111 |
return JSONResponse(content=result)
|
| 112 |
-
|
| 113 |
-
|
|
|
|
| 9 |
|
| 10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
+
# === 1) Cargar modelo CLIP (B/16) ===
|
| 13 |
clip_model, _, preprocess = open_clip.create_model_and_transforms(
|
| 14 |
+
"ViT-B-16", pretrained="openai"
|
| 15 |
)
|
| 16 |
clip_model = clip_model.to(DEVICE)
|
| 17 |
clip_model.eval()
|
| 18 |
+
for p in clip_model.parameters():
|
| 19 |
+
p.requires_grad = False
|
| 20 |
|
| 21 |
+
# === 2) Cargar embeddings hechos con B/16 ===
|
| 22 |
+
# (Aseg煤rate de que estos ficheros existen: los generaste como text_embeddings_modelos_b16.pt y text_embeddings_b16.pt)
|
| 23 |
+
model_ckpt = torch.load("text_embeddings_modelos_b16.pt", map_location=DEVICE)
|
| 24 |
model_labels = model_ckpt["labels"]
|
| 25 |
model_embeddings = model_ckpt["embeddings"].to(DEVICE)
|
| 26 |
model_embeddings /= model_embeddings.norm(dim=-1, keepdim=True)
|
| 27 |
|
| 28 |
+
version_ckpt = torch.load("text_embeddings_b16.pt", map_location=DEVICE)
|
|
|
|
| 29 |
version_labels = version_ckpt["labels"]
|
| 30 |
version_embeddings = version_ckpt["embeddings"].to(DEVICE)
|
| 31 |
version_embeddings /= version_embeddings.norm(dim=-1, keepdim=True)
|
| 32 |
|
| 33 |
+
# Transformaci贸n de imagen (usa la normalize del preprocess de B/16)
|
| 34 |
normalize = next(t for t in preprocess.transforms if isinstance(t, transforms.Normalize))
|
| 35 |
transform = transforms.Compose([
|
| 36 |
transforms.Resize((224, 224)),
|
|
|
|
| 47 |
similarity = (100.0 * image_features @ text_feats.T).softmax(dim=-1)
|
| 48 |
topk_result = torch.topk(similarity[0], k=topk)
|
| 49 |
return [
|
| 50 |
+
{"label": text_labels[idx], "confidence": round(conf.item() * 100, 2)}
|
|
|
|
|
|
|
|
|
|
| 51 |
for conf, idx in zip(topk_result.values, topk_result.indices)
|
| 52 |
]
|
| 53 |
|
|
|
|
| 60 |
modelo_predecido = top_model["label"]
|
| 61 |
confianza_modelo = top_model["confidence"]
|
| 62 |
|
| 63 |
+
# Separar marca y modelo con cuidado (por si solo hay una palabra)
|
| 64 |
+
partes = modelo_predecido.split(" ", 1)
|
| 65 |
+
marca = partes[0]
|
| 66 |
+
modelo = partes[1] if len(partes) > 1 else ""
|
| 67 |
|
| 68 |
+
# Paso 2: filtrar versiones que empiecen con el label completo de modelo
|
| 69 |
versiones_filtradas = [
|
| 70 |
(label, idx) for idx, label in enumerate(version_labels)
|
| 71 |
if label.startswith(modelo_predecido)
|
|
|
|
| 79 |
"version": "No se encontraron versiones para este modelo"
|
| 80 |
}
|
| 81 |
|
| 82 |
+
# Paso 3: predecir versi贸n dentro de las versiones del modelo
|
| 83 |
indices_versiones = [idx for _, idx in versiones_filtradas]
|
| 84 |
versiones_labels = [label for label, _ in versiones_filtradas]
|
| 85 |
versiones_embeds = version_embeddings[indices_versiones]
|
| 86 |
|
|
|
|
| 87 |
top_version = predict_top(versiones_embeds, versiones_labels, img_tensor, topk=1)[0]
|
| 88 |
version_predicha = (
|
| 89 |
+
top_version["label"].replace(modelo_predecido + " ", "")
|
| 90 |
if top_version["confidence"] >= 25
|
| 91 |
else "Versi贸n no identificada con suficiente confianza"
|
| 92 |
)
|
|
|
|
| 99 |
"confianza_version": top_version["confidence"]
|
| 100 |
}
|
| 101 |
|
|
|
|
| 102 |
@app.post("/predict/")
|
| 103 |
async def predict(front: UploadFile = File(...), back: Optional[UploadFile] = File(None)):
|
| 104 |
front_bytes = await front.read()
|
| 105 |
if back:
|
| 106 |
+
_ = await back.read() # de momento no se usa
|
| 107 |
result = process_image(front_bytes)
|
| 108 |
return JSONResponse(content=result)
|
|
|
|
|
|
text_embeddings_b16.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3665a6bb5b3b58cabbbdc35fbc2bffccb827431a2c1a6c12b28bbb1eda193971
|
| 3 |
+
size 2346749
|
text_embeddings_modelos_b16.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7600362f35843cc6000e0ec01c296a9674cde62d5eeb25f281017093c6b736e9
|
| 3 |
+
size 843829
|
versiones_coche.xlsx
ADDED
|
Binary file (26.4 kB). View file
|
|
|