Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
def load_model(): | |
# Load the model once and cache it | |
return pipeline("text-generation", model="deepseek-ai/deepseek-coder-1.3b-instruct") | |
# App UI | |
st.title("🤖 DeepSeek Coder Chat") | |
st.write("Ask questions to the DeepSeek Coder AI model!") | |
# User input | |
user_input = st.text_input("Enter your question:", value="Who are you?") | |
if st.button("Generate Response"): | |
# Format messages in chat format | |
messages = [{"role": "user", "content": user_input}] | |
# Load cached model | |
pipe = load_model() | |
# Generate response with loading indicator | |
with st.spinner("Generating response..."): | |
try: | |
response = pipe(messages) | |
# Display formatted output | |
st.subheader("Response:") | |
st.write(response[0]['generated_text'][1]["content"]) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
# Sidebar with info | |
with st.sidebar: | |
st.markdown("### Model Information") | |
st.write("This app uses the deepseek-ai/deepseek-coder-1.3b-instruct model") | |
st.markdown("### System Requirements") | |
st.write("⚠️ Note: This model requires significant computational resources:") | |
st.write("- ~3GB RAM minimum") | |
st.write("- ~5GB disk space for model weights") | |
st.write("- May take 30-60 seconds to load initially") |