Spaces:
adarsh002
/
Runtime error

test5 / detectron2 /utils /collect_env.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
8.92 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import importlib
import os
import re
import subprocess
import sys
from collections import defaultdict
import numpy as np
import PIL
import torch
import torchvision
from tabulate import tabulate
__all__ = ["collect_env_info"]
def collect_torch_env():
try:
import torch.__config__
return torch.__config__.show()
except ImportError:
# compatible with older versions of pytorch
from torch.utils.collect_env import get_pretty_env_info
return get_pretty_env_info()
def get_env_module():
var_name = "DETECTRON2_ENV_MODULE"
return var_name, os.environ.get(var_name, "<not set>")
def detect_compute_compatibility(CUDA_HOME, so_file):
try:
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump")
if os.path.isfile(cuobjdump):
output = subprocess.check_output(
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True
)
output = output.decode("utf-8").strip().split("\n")
arch = []
for line in output:
line = re.findall(r"\.sm_([0-9]*)\.", line)[0]
arch.append(".".join(line))
arch = sorted(set(arch))
return ", ".join(arch)
else:
return so_file + "; cannot find cuobjdump"
except Exception:
# unhandled failure
return so_file
def collect_env_info():
has_gpu = torch.cuda.is_available() # true for both CUDA & ROCM
torch_version = torch.__version__
# NOTE that CUDA_HOME/ROCM_HOME could be None even when CUDA runtime libs are functional
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
has_rocm = False
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None):
has_rocm = True
has_cuda = has_gpu and (not has_rocm)
data = []
data.append(("sys.platform", sys.platform)) # check-template.yml depends on it
data.append(("Python", sys.version.replace("\n", "")))
data.append(("numpy", np.__version__))
try:
import detectron2 # noqa
data.append(
(
"detectron2",
detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__),
)
)
except ImportError:
data.append(("detectron2", "failed to import"))
except AttributeError:
data.append(("detectron2", "imported a wrong installation"))
try:
import detectron2._C as _C
except ImportError as e:
data.append(("detectron2._C", f"not built correctly: {e}"))
# print system compilers when extension fails to build
if sys.platform != "win32": # don't know what to do for windows
try:
# this is how torch/utils/cpp_extensions.py choose compiler
cxx = os.environ.get("CXX", "c++")
cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True)
cxx = cxx.decode("utf-8").strip().split("\n")[0]
except subprocess.SubprocessError:
cxx = "Not found"
data.append(("Compiler ($CXX)", cxx))
if has_cuda and CUDA_HOME is not None:
try:
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True)
nvcc = nvcc.decode("utf-8").strip().split("\n")[-1]
except subprocess.SubprocessError:
nvcc = "Not found"
data.append(("CUDA compiler", nvcc))
if has_cuda and sys.platform != "win32":
try:
so_file = importlib.util.find_spec("detectron2._C").origin
except (ImportError, AttributeError):
pass
else:
data.append(
(
"detectron2 arch flags",
detect_compute_compatibility(CUDA_HOME, so_file),
)
)
else:
# print compilers that are used to build extension
data.append(("Compiler", _C.get_compiler_version()))
data.append(("CUDA compiler", _C.get_cuda_version())) # cuda or hip
if has_cuda and getattr(_C, "has_cuda", lambda: True)():
data.append(
(
"detectron2 arch flags",
detect_compute_compatibility(CUDA_HOME, _C.__file__),
)
)
data.append(get_env_module())
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__)))
data.append(("PyTorch debug build", torch.version.debug))
try:
data.append(
("torch._C._GLIBCXX_USE_CXX11_ABI", torch._C._GLIBCXX_USE_CXX11_ABI)
)
except Exception:
pass
if not has_gpu:
has_gpu_text = "No: torch.cuda.is_available() == False"
else:
has_gpu_text = "Yes"
data.append(("GPU available", has_gpu_text))
if has_gpu:
devices = defaultdict(list)
for k in range(torch.cuda.device_count()):
cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k)))
name = torch.cuda.get_device_name(k) + f" (arch={cap})"
devices[name].append(str(k))
for name, devids in devices.items():
data.append(("GPU " + ",".join(devids), name))
if has_rocm:
msg = " - invalid!" if not (ROCM_HOME and os.path.isdir(ROCM_HOME)) else ""
data.append(("ROCM_HOME", str(ROCM_HOME) + msg))
else:
try:
from torch.utils.collect_env import (
get_nvidia_driver_version,
run as _run,
)
data.append(("Driver version", get_nvidia_driver_version(_run)))
except Exception:
pass
msg = " - invalid!" if not (CUDA_HOME and os.path.isdir(CUDA_HOME)) else ""
data.append(("CUDA_HOME", str(CUDA_HOME) + msg))
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
if cuda_arch_list:
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
data.append(("Pillow", PIL.__version__))
try:
data.append(
(
"torchvision",
str(torchvision.__version__)
+ " @"
+ os.path.dirname(torchvision.__file__),
)
)
if has_cuda:
try:
torchvision_C = importlib.util.find_spec("torchvision._C").origin
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C)
data.append(("torchvision arch flags", msg))
except (ImportError, AttributeError):
data.append(("torchvision._C", "Not found"))
except AttributeError:
data.append(("torchvision", "unknown"))
try:
import fvcore
data.append(("fvcore", fvcore.__version__))
except (ImportError, AttributeError):
pass
try:
import iopath
data.append(("iopath", iopath.__version__))
except (ImportError, AttributeError):
pass
try:
import cv2
data.append(("cv2", cv2.__version__))
except (ImportError, AttributeError):
data.append(("cv2", "Not found"))
env_str = tabulate(data) + "\n"
env_str += collect_torch_env()
return env_str
def test_nccl_ops():
num_gpu = torch.cuda.device_count()
if os.access("/tmp", os.W_OK):
import torch.multiprocessing as mp
dist_url = "file:///tmp/nccl_tmp_file"
print("Testing NCCL connectivity ... this should not hang.")
mp.spawn(
_test_nccl_worker, nprocs=num_gpu, args=(num_gpu, dist_url), daemon=False
)
print("NCCL succeeded.")
def _test_nccl_worker(rank, num_gpu, dist_url):
import torch.distributed as dist
dist.init_process_group(
backend="NCCL", init_method=dist_url, rank=rank, world_size=num_gpu
)
dist.barrier(device_ids=[rank])
def main() -> None:
global x
try:
from detectron2.utils.collect_env import collect_env_info as f
print(f())
except ImportError:
print(collect_env_info())
if torch.cuda.is_available():
num_gpu = torch.cuda.device_count()
for k in range(num_gpu):
device = f"cuda:{k}"
try:
x = torch.tensor([1, 2.0], dtype=torch.float32)
x = x.to(device)
except Exception as e:
print(
f"Unable to copy tensor to device={device}: {e}. "
"Your CUDA environment is broken."
)
if num_gpu > 1:
test_nccl_ops()
if __name__ == "__main__":
main() # pragma: no cover