Mega_QA / app.py
adamtobegreat's picture
Update app.py
cdb0a78 verified
"""
======================================================
📘 金融客服小智(Fintech Assistant)
版本:v3.4 (📱自動縮放優化版)
更新重點:
1. LLM 三次重試機制(防止 API 錯誤中斷)
2. 整合記憶進 prompt(上下文連貫對話)
3. 安全向量搜尋(避免空 collection 錯誤)
4. lambda 修正(避免共享同一 history)
5. 顯示自動分類提示(可見知識來源)
6. 📱 新增手機縮放與字體比例自適應
======================================================
"""
import os, re, base64, time
import chromadb
import gradio as gr
from langchain_core.documents import Document
from langchain_chroma import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
# === 記憶模組相容多版本 ===
try:
from langchain_memory import ConversationBufferMemory
except ImportError:
try:
from langchain.memory import ConversationBufferMemory
except ImportError:
from langchain_community.memory import ConversationBufferMemory
# =============================================
# 1️⃣ Embedding 與基礎設定
# =============================================
embedding = HuggingFaceEmbeddings(model_name="BAAI/bge-small-zh-v1.5")
BASE_DIR = os.getcwd()
QA_PATH = os.path.join(BASE_DIR, "QA_v2.txt")
LOGO_PATH = os.path.join(BASE_DIR, "mega.png")
API_KEY = os.getenv("GOOGLE_API_KEY")
if not API_KEY:
print("⚠️ 尚未設定 GOOGLE_API_KEY,系統將以模擬模式運行。")
# =============================================
# 2️⃣ QA 載入與分類
# =============================================
def load_qa_documents(path: str):
with open(path, "r", encoding="utf-8") as f:
text = f.read()
pattern = r"(Q[::].*?A[::].*?)(?=Q[::]|$)"
qas = re.findall(pattern, text, flags=re.S)
categories = {"證券": [], "期貨": [], "複委託": []}
for qa in qas:
doc = Document(page_content=qa.strip())
if "證券" in qa:
categories["證券"].append(doc)
elif "期貨" in qa:
categories["期貨"].append(doc)
elif "複委託" in qa:
categories["複委託"].append(doc)
else:
categories["證券"].append(doc)
return categories
if os.path.exists(QA_PATH):
qa_docs = load_qa_documents(QA_PATH)
print("✅ 已載入 QA 檔案,共分為:", {k: len(v) for k, v in qa_docs.items()})
else:
print("⚠️ 未找到 QA_v2.txt,啟用空白知識庫模式。")
qa_docs = {"證券": [], "期貨": [], "複委託": []}
# =============================================
# 3️⃣ 向量資料庫初始化(含安全檢查)
# =============================================
client = chromadb.Client()
collection_map = {"證券": "stocks", "期貨": "futures", "複委託": "overseas"}
vectordbs = {}
for cat, docs in qa_docs.items():
vectordb = Chroma(client=client, collection_name=collection_map[cat], embedding_function=embedding)
try:
count = vectordb._collection.count() if hasattr(vectordb._collection, "count") else len(vectordb.get()["ids"])
except Exception:
count = 0
if count == 0 and docs:
vectordb.add_documents(docs)
vectordbs[cat] = vectordb
print("✅ 向量資料庫初始化完成。")
# =============================================
# 4️⃣ 初始化 LLM 與記憶體
# =============================================
if API_KEY:
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", google_api_key=API_KEY)
else:
llm = None # 模擬模式
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# =============================================
# 5️⃣ 對話邏輯(改進版)
# =============================================
def auto_detect_category(text: str):
if any(k in text for k in ["股票", "證券", "開戶", "下單", "交割"]):
return "證券"
elif any(k in text for k in ["期貨", "選擇權", "保證金"]):
return "期貨"
elif any(k in text for k in ["複委託", "海外", "美股", "港股"]):
return "複委託"
return "證券"
def safe_similarity_search(vectordb, query, k=2):
"""防止空 collection 錯誤"""
try:
results = vectordb.similarity_search(query, k=k)
except Exception as e:
print(f"⚠️ 向量搜尋錯誤:{e}")
results = []
return results
def chat_fn(message, history):
category = auto_detect_category(message)
vectordb = vectordbs[category]
docs = safe_similarity_search(vectordb, message, k=2)
context = "\n\n".join(d.page_content for d in docs) if docs else "查無相關資料"
# ✅ 整合記憶體歷史紀錄
history_data = memory.load_memory_variables({}).get("chat_history", [])
history_text = "\n".join(
[f"{m['role']}: {m['content']}" for m in history_data if isinstance(m, dict)]
)
prompt = f"""
你是一位金融客服人員,請根據以下QA知識回答。
---
{context}
---
使用者問題:{message}
過往對話:
{history_text}
"""
# ✅ LLM 重試機制(3次)
if llm:
for attempt in range(3):
try:
response = llm.invoke(prompt)
reply = getattr(response, "content", None) or getattr(response, "text", "⚠️ 無回覆")
break
except Exception as e:
print(f"⚠️ 第 {attempt+1} 次 LLM 錯誤:{e}")
time.sleep(2)
reply = "⚠️ 系統忙碌中,請稍後再試。"
else:
reply = "(模擬模式)這是示範回覆,請確認是否已設定 GOOGLE_API_KEY。"
memory.save_context({"input": message}, {"output": reply})
return f"📂 類別:{category}\n\n{reply}"
# =============================================
# 6️⃣ Gradio 介面(含手機縮放CSS)
# =============================================
logo_base64 = ""
if os.path.exists(LOGO_PATH):
with open(LOGO_PATH, "rb") as f:
logo_base64 = base64.b64encode(f.read()).decode("utf-8")
with gr.Blocks(
theme="soft",
css="""
/* === 📱 全域縮放設定 === */
@media (max-width: 768px) {
html, body {
zoom: 0.85;
-moz-transform: scale(0.85);
-moz-transform-origin: top left;
}
}
/* === Logo 與標題自適應 === */
#logo-top img { width: 120px; height: auto; }
@media (max-width: 768px) {
#logo-top img { width: 80px; }
h1 { font-size: 20px !important; }
}
/* === 輸入列縮窄設定 === */
@media (max-width: 768px) {
.gradio-container { padding: 6px; }
#chat-row { flex-direction: row !important; gap: 4px !important; }
#chat-row textarea { font-size: 14px !important; height: 42px !important; }
#send-btn { font-size: 14px !important; height: 42px !important; }
}
"""
) as demo:
if logo_base64:
gr.HTML(f"<div id='logo-top'><img src='data:image/png;base64,{logo_base64}'></div>")
gr.HTML("""
<h1 style='text-align:center;'>👨‍💼 我是小智 您的金融好幫手 🫰</h1>
<p style='text-align:center;color:gray;'>Powered by Gemini & LangChain</p>
""")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(label="💬 對話紀錄", type="messages", height=500)
user_input = gr.Textbox(
placeholder="請輸入您的問題,或點選下列「常見問題」...",
show_label=False,
lines=1,
max_lines=3,
elem_id="chat-row"
)
send_btn = gr.Button("送出", variant="primary", elem_id="send-btn")
def handle_input(message, history):
if not message.strip():
return history, gr.update(value="")
reply = chat_fn(message, history)
history = history or []
history += [
{"role": "user", "content": message},
{"role": "assistant", "content": reply},
]
return history, gr.update(value="")
user_input.submit(handle_input, [user_input, chatbot], [chatbot, user_input])
send_btn.click(handle_input, [user_input, chatbot], [chatbot, user_input])
with gr.Column(scale=1):
gr.Markdown("### 🔍 常見問題")
examples = [
"密碼忘記了怎麼辦?",
"下單憑證怎麼申請?",
"法人開證劵戶要準備什麼?",
"期貨交易保證金是什麼?",
"美股交易時間?",
"美股可以定期定額嗎?",
]
for q in examples:
gr.Button(q).click(
fn=lambda q=q: handle_input(q, []),
inputs=[],
outputs=[chatbot, user_input],
)
def clear_all():
memory.clear()
return [], gr.update(value="")
gr.Markdown("---")
gr.Button("🧹 整理畫面").click(clear_all, outputs=[chatbot, user_input])
gr.HTML("<div id='footer' style='text-align:center;color:#aaa;'>© Fintech Assistant — 僅業務使用,非官方授權</div>")
demo.launch()