Spaces:
Sleeping
Sleeping
| """ | |
| ====================================================== | |
| 📘 金融客服小智(Fintech Assistant) | |
| 版本:v3.4 (📱自動縮放優化版) | |
| 更新重點: | |
| 1. LLM 三次重試機制(防止 API 錯誤中斷) | |
| 2. 整合記憶進 prompt(上下文連貫對話) | |
| 3. 安全向量搜尋(避免空 collection 錯誤) | |
| 4. lambda 修正(避免共享同一 history) | |
| 5. 顯示自動分類提示(可見知識來源) | |
| 6. 📱 新增手機縮放與字體比例自適應 | |
| ====================================================== | |
| """ | |
| import os, re, base64, time | |
| import chromadb | |
| import gradio as gr | |
| from langchain_core.documents import Document | |
| from langchain_chroma import Chroma | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| # === 記憶模組相容多版本 === | |
| try: | |
| from langchain_memory import ConversationBufferMemory | |
| except ImportError: | |
| try: | |
| from langchain.memory import ConversationBufferMemory | |
| except ImportError: | |
| from langchain_community.memory import ConversationBufferMemory | |
| # ============================================= | |
| # 1️⃣ Embedding 與基礎設定 | |
| # ============================================= | |
| embedding = HuggingFaceEmbeddings(model_name="BAAI/bge-small-zh-v1.5") | |
| BASE_DIR = os.getcwd() | |
| QA_PATH = os.path.join(BASE_DIR, "QA_v2.txt") | |
| LOGO_PATH = os.path.join(BASE_DIR, "mega.png") | |
| API_KEY = os.getenv("GOOGLE_API_KEY") | |
| if not API_KEY: | |
| print("⚠️ 尚未設定 GOOGLE_API_KEY,系統將以模擬模式運行。") | |
| # ============================================= | |
| # 2️⃣ QA 載入與分類 | |
| # ============================================= | |
| def load_qa_documents(path: str): | |
| with open(path, "r", encoding="utf-8") as f: | |
| text = f.read() | |
| pattern = r"(Q[::].*?A[::].*?)(?=Q[::]|$)" | |
| qas = re.findall(pattern, text, flags=re.S) | |
| categories = {"證券": [], "期貨": [], "複委託": []} | |
| for qa in qas: | |
| doc = Document(page_content=qa.strip()) | |
| if "證券" in qa: | |
| categories["證券"].append(doc) | |
| elif "期貨" in qa: | |
| categories["期貨"].append(doc) | |
| elif "複委託" in qa: | |
| categories["複委託"].append(doc) | |
| else: | |
| categories["證券"].append(doc) | |
| return categories | |
| if os.path.exists(QA_PATH): | |
| qa_docs = load_qa_documents(QA_PATH) | |
| print("✅ 已載入 QA 檔案,共分為:", {k: len(v) for k, v in qa_docs.items()}) | |
| else: | |
| print("⚠️ 未找到 QA_v2.txt,啟用空白知識庫模式。") | |
| qa_docs = {"證券": [], "期貨": [], "複委託": []} | |
| # ============================================= | |
| # 3️⃣ 向量資料庫初始化(含安全檢查) | |
| # ============================================= | |
| client = chromadb.Client() | |
| collection_map = {"證券": "stocks", "期貨": "futures", "複委託": "overseas"} | |
| vectordbs = {} | |
| for cat, docs in qa_docs.items(): | |
| vectordb = Chroma(client=client, collection_name=collection_map[cat], embedding_function=embedding) | |
| try: | |
| count = vectordb._collection.count() if hasattr(vectordb._collection, "count") else len(vectordb.get()["ids"]) | |
| except Exception: | |
| count = 0 | |
| if count == 0 and docs: | |
| vectordb.add_documents(docs) | |
| vectordbs[cat] = vectordb | |
| print("✅ 向量資料庫初始化完成。") | |
| # ============================================= | |
| # 4️⃣ 初始化 LLM 與記憶體 | |
| # ============================================= | |
| if API_KEY: | |
| llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", google_api_key=API_KEY) | |
| else: | |
| llm = None # 模擬模式 | |
| memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
| # ============================================= | |
| # 5️⃣ 對話邏輯(改進版) | |
| # ============================================= | |
| def auto_detect_category(text: str): | |
| if any(k in text for k in ["股票", "證券", "開戶", "下單", "交割"]): | |
| return "證券" | |
| elif any(k in text for k in ["期貨", "選擇權", "保證金"]): | |
| return "期貨" | |
| elif any(k in text for k in ["複委託", "海外", "美股", "港股"]): | |
| return "複委託" | |
| return "證券" | |
| def safe_similarity_search(vectordb, query, k=2): | |
| """防止空 collection 錯誤""" | |
| try: | |
| results = vectordb.similarity_search(query, k=k) | |
| except Exception as e: | |
| print(f"⚠️ 向量搜尋錯誤:{e}") | |
| results = [] | |
| return results | |
| def chat_fn(message, history): | |
| category = auto_detect_category(message) | |
| vectordb = vectordbs[category] | |
| docs = safe_similarity_search(vectordb, message, k=2) | |
| context = "\n\n".join(d.page_content for d in docs) if docs else "查無相關資料" | |
| # ✅ 整合記憶體歷史紀錄 | |
| history_data = memory.load_memory_variables({}).get("chat_history", []) | |
| history_text = "\n".join( | |
| [f"{m['role']}: {m['content']}" for m in history_data if isinstance(m, dict)] | |
| ) | |
| prompt = f""" | |
| 你是一位金融客服人員,請根據以下QA知識回答。 | |
| --- | |
| {context} | |
| --- | |
| 使用者問題:{message} | |
| 過往對話: | |
| {history_text} | |
| """ | |
| # ✅ LLM 重試機制(3次) | |
| if llm: | |
| for attempt in range(3): | |
| try: | |
| response = llm.invoke(prompt) | |
| reply = getattr(response, "content", None) or getattr(response, "text", "⚠️ 無回覆") | |
| break | |
| except Exception as e: | |
| print(f"⚠️ 第 {attempt+1} 次 LLM 錯誤:{e}") | |
| time.sleep(2) | |
| reply = "⚠️ 系統忙碌中,請稍後再試。" | |
| else: | |
| reply = "(模擬模式)這是示範回覆,請確認是否已設定 GOOGLE_API_KEY。" | |
| memory.save_context({"input": message}, {"output": reply}) | |
| return f"📂 類別:{category}\n\n{reply}" | |
| # ============================================= | |
| # 6️⃣ Gradio 介面(含手機縮放CSS) | |
| # ============================================= | |
| logo_base64 = "" | |
| if os.path.exists(LOGO_PATH): | |
| with open(LOGO_PATH, "rb") as f: | |
| logo_base64 = base64.b64encode(f.read()).decode("utf-8") | |
| with gr.Blocks( | |
| theme="soft", | |
| css=""" | |
| /* === 📱 全域縮放設定 === */ | |
| @media (max-width: 768px) { | |
| html, body { | |
| zoom: 0.85; | |
| -moz-transform: scale(0.85); | |
| -moz-transform-origin: top left; | |
| } | |
| } | |
| /* === Logo 與標題自適應 === */ | |
| #logo-top img { width: 120px; height: auto; } | |
| @media (max-width: 768px) { | |
| #logo-top img { width: 80px; } | |
| h1 { font-size: 20px !important; } | |
| } | |
| /* === 輸入列縮窄設定 === */ | |
| @media (max-width: 768px) { | |
| .gradio-container { padding: 6px; } | |
| #chat-row { flex-direction: row !important; gap: 4px !important; } | |
| #chat-row textarea { font-size: 14px !important; height: 42px !important; } | |
| #send-btn { font-size: 14px !important; height: 42px !important; } | |
| } | |
| """ | |
| ) as demo: | |
| if logo_base64: | |
| gr.HTML(f"<div id='logo-top'><img src='data:image/png;base64,{logo_base64}'></div>") | |
| gr.HTML(""" | |
| <h1 style='text-align:center;'>👨💼 我是小智 您的金融好幫手 🫰</h1> | |
| <p style='text-align:center;color:gray;'>Powered by Gemini & LangChain</p> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| chatbot = gr.Chatbot(label="💬 對話紀錄", type="messages", height=500) | |
| user_input = gr.Textbox( | |
| placeholder="請輸入您的問題,或點選下列「常見問題」...", | |
| show_label=False, | |
| lines=1, | |
| max_lines=3, | |
| elem_id="chat-row" | |
| ) | |
| send_btn = gr.Button("送出", variant="primary", elem_id="send-btn") | |
| def handle_input(message, history): | |
| if not message.strip(): | |
| return history, gr.update(value="") | |
| reply = chat_fn(message, history) | |
| history = history or [] | |
| history += [ | |
| {"role": "user", "content": message}, | |
| {"role": "assistant", "content": reply}, | |
| ] | |
| return history, gr.update(value="") | |
| user_input.submit(handle_input, [user_input, chatbot], [chatbot, user_input]) | |
| send_btn.click(handle_input, [user_input, chatbot], [chatbot, user_input]) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### 🔍 常見問題") | |
| examples = [ | |
| "密碼忘記了怎麼辦?", | |
| "下單憑證怎麼申請?", | |
| "法人開證劵戶要準備什麼?", | |
| "期貨交易保證金是什麼?", | |
| "美股交易時間?", | |
| "美股可以定期定額嗎?", | |
| ] | |
| for q in examples: | |
| gr.Button(q).click( | |
| fn=lambda q=q: handle_input(q, []), | |
| inputs=[], | |
| outputs=[chatbot, user_input], | |
| ) | |
| def clear_all(): | |
| memory.clear() | |
| return [], gr.update(value="") | |
| gr.Markdown("---") | |
| gr.Button("🧹 整理畫面").click(clear_all, outputs=[chatbot, user_input]) | |
| gr.HTML("<div id='footer' style='text-align:center;color:#aaa;'>© Fintech Assistant — 僅業務使用,非官方授權</div>") | |
| demo.launch() |