llm_demo / app.py
adamtappis's picture
Update app.py
07fe581
# import torch
# from peft import PeftModel, PeftConfig
# from transformers import AutoModelForCausalLM, AutoTokenizer
# from IPython.display import display, Markdown
# peft_model_id = f"adamtappis/marketing_emails_model"
# config = PeftConfig.from_pretrained(peft_model_id)
# model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False)
# tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
# model = PeftModel.from_pretrained(model, peft_model_id)
# def make_inference(product, description):
# batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt')
#
# with torch.cuda.amp.autocast():
# output_tokens = model.generate(**batch, max_new_tokens=200)
#
# display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))
import gradio as gr
from transformers import pipeline
pipe = pipeline("Marketing", model="adamtappis/marketing_emails_model")
demo = gr.Interface.from_pipeline(pipe)
demo.launch()
# def predict(text):
# return pipe(text)[0]["translation_text"]
# if __name__ == "__main__":
# # make a gradio interface
# import gradio as gr
#
# gr.Interface(
# make_inference,
# [
# gr.inputs.Textbox(lines=1, label="Product Name"),
# gr.inputs.Textbox(lines=1, label="Product Description"),
# ],
# gr.outputs.Textbox(label="Email"),
# title="🗣️Marketing Email Generator📄",
# description="🗣️Marketing Email Generator📄 is a tool that allows you to generate marketing emails for different products",
# ).launch()