Spaces:
Runtime error
Runtime error
# import torch | |
# from peft import PeftModel, PeftConfig | |
# from transformers import AutoModelForCausalLM, AutoTokenizer | |
# from IPython.display import display, Markdown | |
# peft_model_id = f"adamtappis/marketing_emails_model" | |
# config = PeftConfig.from_pretrained(peft_model_id) | |
# model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False) | |
# tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# Load the Lora model | |
# model = PeftModel.from_pretrained(model, peft_model_id) | |
# def make_inference(product, description): | |
# batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt') | |
# | |
# with torch.cuda.amp.autocast(): | |
# output_tokens = model.generate(**batch, max_new_tokens=200) | |
# | |
# display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True)))) | |
import gradio as gr | |
from transformers import pipeline | |
pipe = pipeline("Marketing", model="adamtappis/marketing_emails_model") | |
demo = gr.Interface.from_pipeline(pipe) | |
demo.launch() | |
# def predict(text): | |
# return pipe(text)[0]["translation_text"] | |
# if __name__ == "__main__": | |
# # make a gradio interface | |
# import gradio as gr | |
# | |
# gr.Interface( | |
# make_inference, | |
# [ | |
# gr.inputs.Textbox(lines=1, label="Product Name"), | |
# gr.inputs.Textbox(lines=1, label="Product Description"), | |
# ], | |
# gr.outputs.Textbox(label="Email"), | |
# title="🗣️Marketing Email Generator📄", | |
# description="🗣️Marketing Email Generator📄 is a tool that allows you to generate marketing emails for different products", | |
# ).launch() |