|
import torch |
|
import gradio as gr |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
from diffusers.utils import export_to_video |
|
|
|
pipeline = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") |
|
|
|
def generate_video(prompt): |
|
|
|
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
pipe.enable_model_cpu_offload() |
|
pipe.enable_vae_slicing() |
|
|
|
|
|
video_frames = pipe(prompt, num_inference_steps=25, num_frames=200).frames |
|
|
|
|
|
video_path = export_to_video(video_frames) |
|
return video_path |
|
|
|
iface = gr.Interface(fn=generate_video, inputs="text", outputs="file") |
|
iface.launch() |