adamelliotfields
commited on
Convert presets to dataclasses
Browse files- lib/__init__.py +2 -3
- lib/preset.py +252 -0
- lib/presets.py +0 -193
- pages/1_💬_Text_Generation.py +7 -7
- pages/2_🎨_Text_to_Image.py +28 -28
lib/__init__.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
from .api import txt2img_generate, txt2txt_generate
|
2 |
from .config import config
|
3 |
-
from .
|
4 |
|
5 |
__all__ = [
|
6 |
"config",
|
7 |
-
"
|
8 |
-
"ServicePresets",
|
9 |
"txt2img_generate",
|
10 |
"txt2txt_generate",
|
11 |
]
|
|
|
1 |
from .api import txt2img_generate, txt2txt_generate
|
2 |
from .config import config
|
3 |
+
from .preset import preset
|
4 |
|
5 |
__all__ = [
|
6 |
"config",
|
7 |
+
"preset",
|
|
|
8 |
"txt2img_generate",
|
9 |
"txt2txt_generate",
|
10 |
]
|
lib/preset.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import Dict, List, Optional, Union
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class Txt2TxtPreset:
|
7 |
+
frequency_penalty: float
|
8 |
+
frequency_penalty_min: float
|
9 |
+
frequency_penalty_max: float
|
10 |
+
parameters: Optional[List[str]] = field(default_factory=list)
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class Txt2ImgPreset:
|
15 |
+
# FLUX1.1 has no scale or steps
|
16 |
+
name: str
|
17 |
+
guidance_scale: Optional[float] = None
|
18 |
+
guidance_scale_min: Optional[float] = None
|
19 |
+
guidance_scale_max: Optional[float] = None
|
20 |
+
num_inference_steps: Optional[int] = None
|
21 |
+
num_inference_steps_min: Optional[int] = None
|
22 |
+
num_inference_steps_max: Optional[int] = None
|
23 |
+
parameters: Optional[List[str]] = field(default_factory=list)
|
24 |
+
kwargs: Optional[Dict[str, Union[str, int, float, bool]]] = field(default_factory=dict)
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class Txt2TxtPresets:
|
29 |
+
hugging_face: Txt2TxtPreset
|
30 |
+
perplexity: Txt2TxtPreset
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class Txt2ImgPresets:
|
35 |
+
# bfl
|
36 |
+
flux_1_1_pro_bfl: Txt2ImgPreset
|
37 |
+
flux_dev_bfl: Txt2ImgPreset
|
38 |
+
flux_pro_bfl: Txt2ImgPreset
|
39 |
+
# fal
|
40 |
+
aura_flow: Txt2ImgPreset
|
41 |
+
flux_1_1_pro_fal: Txt2ImgPreset
|
42 |
+
flux_dev_fal: Txt2ImgPreset
|
43 |
+
flux_pro_fal: Txt2ImgPreset
|
44 |
+
flux_schnell_fal: Txt2ImgPreset
|
45 |
+
fooocus: Txt2ImgPreset
|
46 |
+
kolors: Txt2ImgPreset
|
47 |
+
stable_diffusion_3: Txt2ImgPreset
|
48 |
+
# hf
|
49 |
+
flux_dev_hf: Txt2ImgPreset
|
50 |
+
flux_schnell_hf: Txt2ImgPreset
|
51 |
+
stable_diffusion_xl: Txt2ImgPreset
|
52 |
+
# together
|
53 |
+
flux_schnell_free_together: Txt2ImgPreset
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass
|
57 |
+
class Preset:
|
58 |
+
txt2txt: Txt2TxtPresets
|
59 |
+
txt2img: Txt2ImgPresets
|
60 |
+
|
61 |
+
|
62 |
+
preset = Preset(
|
63 |
+
txt2txt=Txt2TxtPresets(
|
64 |
+
# Every service has model and system messages
|
65 |
+
hugging_face=Txt2TxtPreset(
|
66 |
+
frequency_penalty=0.0,
|
67 |
+
frequency_penalty_min=-2.0,
|
68 |
+
frequency_penalty_max=2.0,
|
69 |
+
parameters=["max_tokens", "temperature", "frequency_penalty", "seed"],
|
70 |
+
),
|
71 |
+
perplexity=Txt2TxtPreset(
|
72 |
+
frequency_penalty=1.0,
|
73 |
+
frequency_penalty_min=1.0,
|
74 |
+
frequency_penalty_max=2.0,
|
75 |
+
parameters=["max_tokens", "temperature", "frequency_penalty"],
|
76 |
+
),
|
77 |
+
),
|
78 |
+
txt2img=Txt2ImgPresets(
|
79 |
+
aura_flow=Txt2ImgPreset(
|
80 |
+
"AuraFlow",
|
81 |
+
guidance_scale=3.5,
|
82 |
+
guidance_scale_min=1.0,
|
83 |
+
guidance_scale_max=10.0,
|
84 |
+
num_inference_steps=28,
|
85 |
+
num_inference_steps_min=10,
|
86 |
+
num_inference_steps_max=50,
|
87 |
+
parameters=["seed", "num_inference_steps", "guidance_scale", "expand_prompt"],
|
88 |
+
kwargs={"num_images": 1, "sync_mode": False},
|
89 |
+
),
|
90 |
+
flux_1_1_pro_bfl=Txt2ImgPreset(
|
91 |
+
"FLUX1.1 Pro",
|
92 |
+
parameters=["seed", "width", "height", "prompt_upsampling"],
|
93 |
+
kwargs={"safety_tolerance": 6},
|
94 |
+
),
|
95 |
+
flux_pro_bfl=Txt2ImgPreset(
|
96 |
+
"FLUX.1 Pro",
|
97 |
+
guidance_scale=2.5,
|
98 |
+
guidance_scale_min=1.5,
|
99 |
+
guidance_scale_max=5.0,
|
100 |
+
num_inference_steps=40,
|
101 |
+
num_inference_steps_min=10,
|
102 |
+
num_inference_steps_max=50,
|
103 |
+
parameters=["seed", "width", "height", "steps", "guidance", "prompt_upsampling"],
|
104 |
+
kwargs={"safety_tolerance": 6, "interval": 1},
|
105 |
+
),
|
106 |
+
flux_dev_bfl=Txt2ImgPreset(
|
107 |
+
"FLUX.1 Dev",
|
108 |
+
num_inference_steps=28,
|
109 |
+
num_inference_steps_min=10,
|
110 |
+
num_inference_steps_max=50,
|
111 |
+
guidance_scale=3.0,
|
112 |
+
guidance_scale_min=1.5,
|
113 |
+
guidance_scale_max=5.0,
|
114 |
+
parameters=["seed", "width", "height", "steps", "guidance", "prompt_upsampling"],
|
115 |
+
kwargs={"safety_tolerance": 6},
|
116 |
+
),
|
117 |
+
flux_1_1_pro_fal=Txt2ImgPreset(
|
118 |
+
"FLUX1.1 Pro",
|
119 |
+
parameters=["seed", "image_size"],
|
120 |
+
kwargs={
|
121 |
+
"num_images": 1,
|
122 |
+
"sync_mode": False,
|
123 |
+
"safety_tolerance": 6,
|
124 |
+
"enable_safety_checker": False,
|
125 |
+
},
|
126 |
+
),
|
127 |
+
flux_pro_fal=Txt2ImgPreset(
|
128 |
+
"FLUX.1 Pro",
|
129 |
+
guidance_scale=2.5,
|
130 |
+
guidance_scale_min=1.5,
|
131 |
+
guidance_scale_max=5.0,
|
132 |
+
num_inference_steps=40,
|
133 |
+
num_inference_steps_min=10,
|
134 |
+
num_inference_steps_max=50,
|
135 |
+
parameters=["seed", "image_size", "num_inference_steps", "guidance_scale"],
|
136 |
+
kwargs={"num_images": 1, "sync_mode": False, "safety_tolerance": 6},
|
137 |
+
),
|
138 |
+
flux_dev_fal=Txt2ImgPreset(
|
139 |
+
"FLUX.1 Dev",
|
140 |
+
num_inference_steps=28,
|
141 |
+
num_inference_steps_min=10,
|
142 |
+
num_inference_steps_max=50,
|
143 |
+
guidance_scale=3.0,
|
144 |
+
guidance_scale_min=1.5,
|
145 |
+
guidance_scale_max=5.0,
|
146 |
+
parameters=["seed", "image_size", "num_inference_steps", "guidance_scale"],
|
147 |
+
kwargs={"num_images": 1, "sync_mode": False, "safety_tolerance": 6},
|
148 |
+
),
|
149 |
+
flux_schnell_fal=Txt2ImgPreset(
|
150 |
+
"FLUX.1 Schnell",
|
151 |
+
num_inference_steps=4,
|
152 |
+
num_inference_steps_min=1,
|
153 |
+
num_inference_steps_max=12,
|
154 |
+
parameters=["seed", "image_size", "num_inference_steps"],
|
155 |
+
kwargs={"num_images": 1, "sync_mode": False, "enable_safety_checker": False},
|
156 |
+
),
|
157 |
+
flux_dev_hf=Txt2ImgPreset(
|
158 |
+
"FLUX.1 Dev",
|
159 |
+
num_inference_steps=28,
|
160 |
+
num_inference_steps_min=10,
|
161 |
+
num_inference_steps_max=50,
|
162 |
+
guidance_scale=3.0,
|
163 |
+
guidance_scale_min=1.5,
|
164 |
+
guidance_scale_max=5.0,
|
165 |
+
parameters=["width", "height", "guidance_scale", "num_inference_steps"],
|
166 |
+
kwargs={"max_sequence_length": 512},
|
167 |
+
),
|
168 |
+
flux_schnell_hf=Txt2ImgPreset(
|
169 |
+
"FLUX.1 Schnell",
|
170 |
+
num_inference_steps=4,
|
171 |
+
num_inference_steps_min=1,
|
172 |
+
num_inference_steps_max=12,
|
173 |
+
parameters=["width", "height", "num_inference_steps"],
|
174 |
+
kwargs={"guidance_scale": 0.0, "max_sequence_length": 256},
|
175 |
+
),
|
176 |
+
flux_schnell_free_together=Txt2ImgPreset(
|
177 |
+
"FLUX.1 Schnell Free",
|
178 |
+
num_inference_steps=4,
|
179 |
+
num_inference_steps_min=1,
|
180 |
+
num_inference_steps_max=12,
|
181 |
+
parameters=["model", "seed", "width", "height", "steps"],
|
182 |
+
kwargs={"n": 1},
|
183 |
+
),
|
184 |
+
fooocus=Txt2ImgPreset(
|
185 |
+
"Fooocus",
|
186 |
+
guidance_scale=4.0,
|
187 |
+
guidance_scale_min=1.0,
|
188 |
+
guidance_scale_max=10.0,
|
189 |
+
parameters=["seed", "negative_prompt", "aspect_ratio", "guidance_scale"],
|
190 |
+
kwargs={
|
191 |
+
"num_images": 1,
|
192 |
+
"sync_mode": True,
|
193 |
+
"enable_safety_checker": False,
|
194 |
+
"output_format": "png",
|
195 |
+
"sharpness": 2,
|
196 |
+
"styles": ["Fooocus Enhance", "Fooocus V2", "Fooocus Sharp"],
|
197 |
+
"performance": "Quality",
|
198 |
+
},
|
199 |
+
),
|
200 |
+
kolors=Txt2ImgPreset(
|
201 |
+
"Kolors",
|
202 |
+
guidance_scale=5.0,
|
203 |
+
guidance_scale_min=1.0,
|
204 |
+
guidance_scale_max=10.0,
|
205 |
+
num_inference_steps=50,
|
206 |
+
num_inference_steps_min=10,
|
207 |
+
num_inference_steps_max=50,
|
208 |
+
parameters=["seed", "negative_prompt", "image_size", "guidance_scale", "num_inference_steps"],
|
209 |
+
kwargs={
|
210 |
+
"num_images": 1,
|
211 |
+
"sync_mode": True,
|
212 |
+
"enable_safety_checker": False,
|
213 |
+
"scheduler": "EulerDiscreteScheduler",
|
214 |
+
},
|
215 |
+
),
|
216 |
+
stable_diffusion_3=Txt2ImgPreset(
|
217 |
+
"SD3",
|
218 |
+
guidance_scale=5.0,
|
219 |
+
guidance_scale_min=1.0,
|
220 |
+
guidance_scale_max=10.0,
|
221 |
+
num_inference_steps=28,
|
222 |
+
num_inference_steps_min=10,
|
223 |
+
num_inference_steps_max=50,
|
224 |
+
parameters=[
|
225 |
+
"seed",
|
226 |
+
"negative_prompt",
|
227 |
+
"image_size",
|
228 |
+
"guidance_scale",
|
229 |
+
"num_inference_steps",
|
230 |
+
"prompt_expansion",
|
231 |
+
],
|
232 |
+
kwargs={"num_images": 1, "sync_mode": True, "enable_safety_checker": False},
|
233 |
+
),
|
234 |
+
stable_diffusion_xl=Txt2ImgPreset(
|
235 |
+
"SDXL",
|
236 |
+
guidance_scale=7.0,
|
237 |
+
guidance_scale_min=1.0,
|
238 |
+
guidance_scale_max=10.0,
|
239 |
+
num_inference_steps=40,
|
240 |
+
num_inference_steps_min=10,
|
241 |
+
num_inference_steps_max=50,
|
242 |
+
parameters=[
|
243 |
+
"seed",
|
244 |
+
"negative_prompt",
|
245 |
+
"width",
|
246 |
+
"height",
|
247 |
+
"guidance_scale",
|
248 |
+
"num_inference_steps",
|
249 |
+
],
|
250 |
+
),
|
251 |
+
),
|
252 |
+
)
|
lib/presets.py
DELETED
@@ -1,193 +0,0 @@
|
|
1 |
-
from types import SimpleNamespace
|
2 |
-
|
3 |
-
# txt2txt
|
4 |
-
ServicePresets = SimpleNamespace(
|
5 |
-
# Every service has model and system messages
|
6 |
-
HUGGING_FACE={
|
7 |
-
"frequency_penalty": 0.0,
|
8 |
-
"frequency_penalty_min": -2.0,
|
9 |
-
"frequency_penalty_max": 2.0,
|
10 |
-
"parameters": ["max_tokens", "temperature", "frequency_penalty", "seed"],
|
11 |
-
},
|
12 |
-
PERPLEXITY={
|
13 |
-
"frequency_penalty": 1.0,
|
14 |
-
"frequency_penalty_min": 1.0,
|
15 |
-
"frequency_penalty_max": 2.0,
|
16 |
-
"parameters": ["max_tokens", "temperature", "frequency_penalty"],
|
17 |
-
},
|
18 |
-
)
|
19 |
-
|
20 |
-
# txt2img
|
21 |
-
ModelPresets = SimpleNamespace(
|
22 |
-
AURA_FLOW={
|
23 |
-
"name": "AuraFlow",
|
24 |
-
"guidance_scale": 3.5,
|
25 |
-
"guidance_scale_min": 1.0,
|
26 |
-
"guidance_scale_max": 10.0,
|
27 |
-
"num_inference_steps": 28,
|
28 |
-
"num_inference_steps_min": 10,
|
29 |
-
"num_inference_steps_max": 50,
|
30 |
-
"parameters": ["seed", "num_inference_steps", "guidance_scale", "expand_prompt"],
|
31 |
-
"kwargs": {"num_images": 1, "sync_mode": False},
|
32 |
-
},
|
33 |
-
FLUX_1_1_PRO_BFL={
|
34 |
-
"name": "FLUX1.1 Pro",
|
35 |
-
"parameters": ["seed", "width", "height", "prompt_upsampling"],
|
36 |
-
"kwargs": {"safety_tolerance": 6},
|
37 |
-
},
|
38 |
-
FLUX_PRO_BFL={
|
39 |
-
"name": "FLUX.1 Pro",
|
40 |
-
"guidance_scale": 2.5,
|
41 |
-
"guidance_scale_min": 1.5,
|
42 |
-
"guidance_scale_max": 5.0,
|
43 |
-
"num_inference_steps": 40,
|
44 |
-
"num_inference_steps_min": 10,
|
45 |
-
"num_inference_steps_max": 50,
|
46 |
-
"parameters": ["seed", "width", "height", "steps", "guidance", "prompt_upsampling"],
|
47 |
-
"kwargs": {"safety_tolerance": 6, "interval": 1},
|
48 |
-
},
|
49 |
-
FLUX_DEV_BFL={
|
50 |
-
"name": "FLUX.1 Dev",
|
51 |
-
"num_inference_steps": 28,
|
52 |
-
"num_inference_steps_min": 10,
|
53 |
-
"num_inference_steps_max": 50,
|
54 |
-
"guidance_scale": 3.0,
|
55 |
-
"guidance_scale_min": 1.5,
|
56 |
-
"guidance_scale_max": 5.0,
|
57 |
-
"parameters": ["seed", "width", "height", "steps", "guidance", "prompt_upsampling"],
|
58 |
-
"kwargs": {"safety_tolerance": 6},
|
59 |
-
},
|
60 |
-
FLUX_1_1_PRO_FAL={
|
61 |
-
"name": "FLUX1.1 Pro",
|
62 |
-
"parameters": ["seed", "image_size"],
|
63 |
-
"kwargs": {
|
64 |
-
"num_images": 1,
|
65 |
-
"sync_mode": False,
|
66 |
-
"safety_tolerance": 6,
|
67 |
-
"enable_safety_checker": False,
|
68 |
-
},
|
69 |
-
},
|
70 |
-
FLUX_PRO_FAL={
|
71 |
-
"name": "FLUX.1 Pro",
|
72 |
-
"guidance_scale": 2.5,
|
73 |
-
"guidance_scale_min": 1.5,
|
74 |
-
"guidance_scale_max": 5.0,
|
75 |
-
"num_inference_steps": 40,
|
76 |
-
"num_inference_steps_min": 10,
|
77 |
-
"num_inference_steps_max": 50,
|
78 |
-
"parameters": ["seed", "image_size", "num_inference_steps", "guidance_scale"],
|
79 |
-
"kwargs": {"num_images": 1, "sync_mode": False, "safety_tolerance": 6},
|
80 |
-
},
|
81 |
-
FLUX_DEV_FAL={
|
82 |
-
"name": "FLUX.1 Dev",
|
83 |
-
"num_inference_steps": 28,
|
84 |
-
"num_inference_steps_min": 10,
|
85 |
-
"num_inference_steps_max": 50,
|
86 |
-
"guidance_scale": 3.0,
|
87 |
-
"guidance_scale_min": 1.5,
|
88 |
-
"guidance_scale_max": 5.0,
|
89 |
-
"parameters": ["seed", "image_size", "num_inference_steps", "guidance_scale"],
|
90 |
-
"kwargs": {"num_images": 1, "sync_mode": False, "safety_tolerance": 6},
|
91 |
-
},
|
92 |
-
FLUX_SCHNELL_FAL={
|
93 |
-
"name": "FLUX.1 Schnell",
|
94 |
-
"num_inference_steps": 4,
|
95 |
-
"num_inference_steps_min": 1,
|
96 |
-
"num_inference_steps_max": 12,
|
97 |
-
"parameters": ["seed", "image_size", "num_inference_steps"],
|
98 |
-
"kwargs": {"num_images": 1, "sync_mode": False, "enable_safety_checker": False},
|
99 |
-
},
|
100 |
-
FLUX_DEV_HF={
|
101 |
-
"name": "FLUX.1 Dev",
|
102 |
-
"num_inference_steps": 28,
|
103 |
-
"num_inference_steps_min": 10,
|
104 |
-
"num_inference_steps_max": 50,
|
105 |
-
"guidance_scale": 3.0,
|
106 |
-
"guidance_scale_min": 1.5,
|
107 |
-
"guidance_scale_max": 5.0,
|
108 |
-
"parameters": ["width", "height", "guidance_scale", "num_inference_steps"],
|
109 |
-
"kwargs": {"max_sequence_length": 512},
|
110 |
-
},
|
111 |
-
FLUX_SCHNELL_HF={
|
112 |
-
"name": "FLUX.1 Schnell",
|
113 |
-
"num_inference_steps": 4,
|
114 |
-
"num_inference_steps_min": 1,
|
115 |
-
"num_inference_steps_max": 12,
|
116 |
-
"parameters": ["width", "height", "num_inference_steps"],
|
117 |
-
"kwargs": {"guidance_scale": 0.0, "max_sequence_length": 256},
|
118 |
-
},
|
119 |
-
FLUX_SCHNELL_FREE_TOGETHER={
|
120 |
-
"name": "FLUX.1 Schnell Free",
|
121 |
-
"num_inference_steps": 4,
|
122 |
-
"num_inference_steps_min": 1,
|
123 |
-
"num_inference_steps_max": 12,
|
124 |
-
"parameters": ["model", "seed", "width", "height", "steps"],
|
125 |
-
"kwargs": {"n": 1},
|
126 |
-
},
|
127 |
-
FOOOCUS={
|
128 |
-
"name": "Fooocus",
|
129 |
-
"guidance_scale": 4.0,
|
130 |
-
"guidance_scale_min": 1.0,
|
131 |
-
"guidance_scale_max": 10.0,
|
132 |
-
"parameters": ["seed", "negative_prompt", "aspect_ratio", "guidance_scale"],
|
133 |
-
"kwargs": {
|
134 |
-
"num_images": 1,
|
135 |
-
"sync_mode": True,
|
136 |
-
"enable_safety_checker": False,
|
137 |
-
"output_format": "png",
|
138 |
-
"sharpness": 2,
|
139 |
-
"styles": ["Fooocus Enhance", "Fooocus V2", "Fooocus Sharp"],
|
140 |
-
"performance": "Quality",
|
141 |
-
},
|
142 |
-
},
|
143 |
-
KOLORS={
|
144 |
-
"name": "Kolors",
|
145 |
-
"guidance_scale": 5.0,
|
146 |
-
"guidance_scale_min": 1.0,
|
147 |
-
"guidance_scale_max": 10.0,
|
148 |
-
"num_inference_steps": 50,
|
149 |
-
"num_inference_steps_min": 10,
|
150 |
-
"num_inference_steps_max": 50,
|
151 |
-
"parameters": [
|
152 |
-
"seed",
|
153 |
-
"negative_prompt",
|
154 |
-
"image_size",
|
155 |
-
"guidance_scale",
|
156 |
-
"num_inference_steps",
|
157 |
-
],
|
158 |
-
"kwargs": {
|
159 |
-
"num_images": 1,
|
160 |
-
"sync_mode": True,
|
161 |
-
"enable_safety_checker": False,
|
162 |
-
"scheduler": "EulerDiscreteScheduler",
|
163 |
-
},
|
164 |
-
},
|
165 |
-
STABLE_DIFFUSION_3={
|
166 |
-
"name": "SD3",
|
167 |
-
"guidance_scale": 5.0,
|
168 |
-
"guidance_scale_min": 1.0,
|
169 |
-
"guidance_scale_max": 10.0,
|
170 |
-
"num_inference_steps": 28,
|
171 |
-
"num_inference_steps_min": 10,
|
172 |
-
"num_inference_steps_max": 50,
|
173 |
-
"parameters": [
|
174 |
-
"seed",
|
175 |
-
"negative_prompt",
|
176 |
-
"image_size",
|
177 |
-
"guidance_scale",
|
178 |
-
"num_inference_steps",
|
179 |
-
"prompt_expansion",
|
180 |
-
],
|
181 |
-
"kwargs": {"num_images": 1, "sync_mode": True, "enable_safety_checker": False},
|
182 |
-
},
|
183 |
-
STABLE_DIFFUSION_XL={
|
184 |
-
"name": "SDXL",
|
185 |
-
"guidance_scale": 7.0,
|
186 |
-
"guidance_scale_min": 1.0,
|
187 |
-
"guidance_scale_max": 10.0,
|
188 |
-
"num_inference_steps": 40,
|
189 |
-
"num_inference_steps_min": 10,
|
190 |
-
"num_inference_steps_max": 50,
|
191 |
-
"parameters": ["seed", "negative_prompt", "width", "height", "guidance_scale", "num_inference_steps"],
|
192 |
-
},
|
193 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/1_💬_Text_Generation.py
CHANGED
@@ -3,7 +3,7 @@ from datetime import datetime
|
|
3 |
|
4 |
import streamlit as st
|
5 |
|
6 |
-
from lib import
|
7 |
|
8 |
SERVICE_SESSION = {
|
9 |
"Hugging Face": "api_key_hugging_face",
|
@@ -74,9 +74,9 @@ system = st.sidebar.text_area(
|
|
74 |
|
75 |
# build parameters from preset
|
76 |
parameters = {}
|
77 |
-
service_key = service.
|
78 |
-
|
79 |
-
for param in
|
80 |
if param == "max_tokens":
|
81 |
parameters[param] = st.sidebar.slider(
|
82 |
"Max Tokens",
|
@@ -101,9 +101,9 @@ for param in preset["parameters"]:
|
|
101 |
parameters[param] = st.sidebar.slider(
|
102 |
"Frequency Penalty",
|
103 |
step=0.1,
|
104 |
-
value=
|
105 |
-
min_value=
|
106 |
-
max_value=
|
107 |
disabled=st.session_state.running,
|
108 |
help="Penalize new tokens based on their existing frequency in the text (default: 0.0)",
|
109 |
)
|
|
|
3 |
|
4 |
import streamlit as st
|
5 |
|
6 |
+
from lib import config, preset, txt2txt_generate
|
7 |
|
8 |
SERVICE_SESSION = {
|
9 |
"Hugging Face": "api_key_hugging_face",
|
|
|
74 |
|
75 |
# build parameters from preset
|
76 |
parameters = {}
|
77 |
+
service_key = service.lower().replace(" ", "_")
|
78 |
+
service_preset = getattr(preset.txt2txt, service_key)
|
79 |
+
for param in service_preset.parameters:
|
80 |
if param == "max_tokens":
|
81 |
parameters[param] = st.sidebar.slider(
|
82 |
"Max Tokens",
|
|
|
101 |
parameters[param] = st.sidebar.slider(
|
102 |
"Frequency Penalty",
|
103 |
step=0.1,
|
104 |
+
value=service_preset.frequency_penalty,
|
105 |
+
min_value=service_preset.frequency_penalty_min,
|
106 |
+
max_value=service_preset.frequency_penalty_max,
|
107 |
disabled=st.session_state.running,
|
108 |
help="Penalize new tokens based on their existing frequency in the text (default: 0.0)",
|
109 |
)
|
pages/2_🎨_Text_to_Image.py
CHANGED
@@ -3,7 +3,7 @@ from datetime import datetime
|
|
3 |
|
4 |
import streamlit as st
|
5 |
|
6 |
-
from lib import
|
7 |
|
8 |
# The token name is the service in lower_snake_case
|
9 |
SERVICE_SESSION = {
|
@@ -24,24 +24,24 @@ SESSION_TOKEN = {
|
|
24 |
# Model IDs in lib/config.py
|
25 |
PRESET_MODEL = {
|
26 |
# bfl
|
27 |
-
"flux-pro-1.1":
|
28 |
-
"flux-pro":
|
29 |
-
"flux-dev":
|
30 |
# fal
|
31 |
-
"fal-ai/aura-flow":
|
32 |
-
"fal-ai/flux/dev":
|
33 |
-
"fal-ai/flux/schnell":
|
34 |
-
"fal-ai/flux-pro":
|
35 |
-
"fal-ai/flux-pro/v1.1":
|
36 |
-
"fal-ai/fooocus":
|
37 |
-
"fal-ai/kolors":
|
38 |
-
"fal-ai/stable-diffusion-v3-medium":
|
39 |
# hf
|
40 |
-
"black-forest-labs/flux.1-dev":
|
41 |
-
"black-forest-labs/flux.1-schnell":
|
42 |
-
"stabilityai/stable-diffusion-xl-base-1.0":
|
43 |
# together
|
44 |
-
"black-forest-labs/FLUX.1-schnell-Free":
|
45 |
}
|
46 |
|
47 |
st.set_page_config(
|
@@ -81,7 +81,8 @@ service = st.sidebar.selectbox(
|
|
81 |
index=2, # Hugging Face
|
82 |
)
|
83 |
|
84 |
-
#
|
|
|
85 |
for display_name, session_key in SERVICE_SESSION.items():
|
86 |
if service == display_name:
|
87 |
st.session_state[session_key] = st.sidebar.text_input(
|
@@ -108,7 +109,7 @@ st.html("""
|
|
108 |
# Build parameters from preset by rendering the appropriate input widgets
|
109 |
parameters = {}
|
110 |
preset = PRESET_MODEL[model]
|
111 |
-
for param in preset
|
112 |
if param == "model":
|
113 |
parameters[param] = model
|
114 |
if param == "seed":
|
@@ -160,18 +161,18 @@ for param in preset["parameters"]:
|
|
160 |
if param in ["guidance_scale", "guidance"]:
|
161 |
parameters[param] = st.sidebar.slider(
|
162 |
"Guidance Scale",
|
163 |
-
preset
|
164 |
-
preset
|
165 |
-
preset
|
166 |
0.1,
|
167 |
disabled=st.session_state.running,
|
168 |
)
|
169 |
if param in ["num_inference_steps", "steps"]:
|
170 |
parameters[param] = st.sidebar.slider(
|
171 |
"Inference Steps",
|
172 |
-
preset
|
173 |
-
preset
|
174 |
-
preset
|
175 |
1,
|
176 |
disabled=st.session_state.running,
|
177 |
)
|
@@ -279,16 +280,15 @@ if prompt := st.chat_input(
|
|
279 |
|
280 |
with st.chat_message("assistant"):
|
281 |
with st.spinner("Running..."):
|
282 |
-
if preset.
|
283 |
-
parameters.update(preset
|
284 |
session_key = f"api_key_{service.lower().replace(' ', '_')}"
|
285 |
api_key = st.session_state[session_key] or SESSION_TOKEN[session_key]
|
286 |
image = txt2img_generate(api_key, service, model, prompt, parameters)
|
287 |
st.session_state.running = False
|
288 |
|
289 |
-
model_name = PRESET_MODEL[model]["name"]
|
290 |
st.session_state.txt2img_messages.append(
|
291 |
-
{"role": "user", "content": prompt, "parameters": parameters, "model":
|
292 |
)
|
293 |
st.session_state.txt2img_messages.append({"role": "assistant", "content": image})
|
294 |
st.rerun()
|
|
|
3 |
|
4 |
import streamlit as st
|
5 |
|
6 |
+
from lib import config, preset, txt2img_generate
|
7 |
|
8 |
# The token name is the service in lower_snake_case
|
9 |
SERVICE_SESSION = {
|
|
|
24 |
# Model IDs in lib/config.py
|
25 |
PRESET_MODEL = {
|
26 |
# bfl
|
27 |
+
"flux-pro-1.1": preset.txt2img.flux_1_1_pro_bfl,
|
28 |
+
"flux-pro": preset.txt2img.flux_pro_bfl,
|
29 |
+
"flux-dev": preset.txt2img.flux_dev_bfl,
|
30 |
# fal
|
31 |
+
"fal-ai/aura-flow": preset.txt2img.aura_flow,
|
32 |
+
"fal-ai/flux/dev": preset.txt2img.flux_dev_fal,
|
33 |
+
"fal-ai/flux/schnell": preset.txt2img.flux_schnell_fal,
|
34 |
+
"fal-ai/flux-pro": preset.txt2img.flux_pro_fal,
|
35 |
+
"fal-ai/flux-pro/v1.1": preset.txt2img.flux_1_1_pro_fal,
|
36 |
+
"fal-ai/fooocus": preset.txt2img.fooocus,
|
37 |
+
"fal-ai/kolors": preset.txt2img.kolors,
|
38 |
+
"fal-ai/stable-diffusion-v3-medium": preset.txt2img.stable_diffusion_3,
|
39 |
# hf
|
40 |
+
"black-forest-labs/flux.1-dev": preset.txt2img.flux_dev_hf,
|
41 |
+
"black-forest-labs/flux.1-schnell": preset.txt2img.flux_schnell_hf,
|
42 |
+
"stabilityai/stable-diffusion-xl-base-1.0": preset.txt2img.stable_diffusion_xl,
|
43 |
# together
|
44 |
+
"black-forest-labs/FLUX.1-schnell-Free": preset.txt2img.flux_schnell_free_together,
|
45 |
}
|
46 |
|
47 |
st.set_page_config(
|
|
|
81 |
index=2, # Hugging Face
|
82 |
)
|
83 |
|
84 |
+
# Show the API key input for the selected service.
|
85 |
+
# Disable and hide value if set by environment variable; handle empty string value later.
|
86 |
for display_name, session_key in SERVICE_SESSION.items():
|
87 |
if service == display_name:
|
88 |
st.session_state[session_key] = st.sidebar.text_input(
|
|
|
109 |
# Build parameters from preset by rendering the appropriate input widgets
|
110 |
parameters = {}
|
111 |
preset = PRESET_MODEL[model]
|
112 |
+
for param in preset.parameters:
|
113 |
if param == "model":
|
114 |
parameters[param] = model
|
115 |
if param == "seed":
|
|
|
161 |
if param in ["guidance_scale", "guidance"]:
|
162 |
parameters[param] = st.sidebar.slider(
|
163 |
"Guidance Scale",
|
164 |
+
preset.guidance_scale_min,
|
165 |
+
preset.guidance_scale_max,
|
166 |
+
preset.guidance_scale,
|
167 |
0.1,
|
168 |
disabled=st.session_state.running,
|
169 |
)
|
170 |
if param in ["num_inference_steps", "steps"]:
|
171 |
parameters[param] = st.sidebar.slider(
|
172 |
"Inference Steps",
|
173 |
+
preset.num_inference_steps_min,
|
174 |
+
preset.num_inference_steps_max,
|
175 |
+
preset.num_inference_steps,
|
176 |
1,
|
177 |
disabled=st.session_state.running,
|
178 |
)
|
|
|
280 |
|
281 |
with st.chat_message("assistant"):
|
282 |
with st.spinner("Running..."):
|
283 |
+
if preset.kwargs:
|
284 |
+
parameters.update(preset.kwargs)
|
285 |
session_key = f"api_key_{service.lower().replace(' ', '_')}"
|
286 |
api_key = st.session_state[session_key] or SESSION_TOKEN[session_key]
|
287 |
image = txt2img_generate(api_key, service, model, prompt, parameters)
|
288 |
st.session_state.running = False
|
289 |
|
|
|
290 |
st.session_state.txt2img_messages.append(
|
291 |
+
{"role": "user", "content": prompt, "parameters": parameters, "model": PRESET_MODEL[model].name}
|
292 |
)
|
293 |
st.session_state.txt2img_messages.append({"role": "assistant", "content": image})
|
294 |
st.rerun()
|