Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Loader improvements
Browse files- lib/loader.py +106 -74
lib/loader.py
CHANGED
@@ -18,9 +18,12 @@ from .upscaler import RealESRGAN
|
|
18 |
|
19 |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
# inspired by ComfyUI
|
23 |
-
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py
|
24 |
class Loader:
|
25 |
_instance = None
|
26 |
|
@@ -32,40 +35,69 @@ class Loader:
|
|
32 |
cls._instance.ip_adapter = None
|
33 |
return cls._instance
|
34 |
|
35 |
-
def
|
36 |
-
|
37 |
-
if scale == 1:
|
38 |
-
self.upscaler = None
|
39 |
-
if scale > 1 and not same_scale:
|
40 |
-
self.upscaler = RealESRGAN(device=device, scale=scale)
|
41 |
-
self.upscaler.load_weights()
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
|
46 |
-
return
|
47 |
-
if has_deepcache:
|
48 |
-
self.pipe.deepcache.disable()
|
49 |
-
else:
|
50 |
-
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
|
51 |
-
self.pipe.deepcache.set_params(cache_interval=interval)
|
52 |
-
self.pipe.deepcache.enable()
|
53 |
|
54 |
-
def
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
if
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def _load_ip_adapter(self, ip_adapter=None):
|
68 |
-
if self.ip_adapter is None and
|
69 |
print(f"Loading IP Adapter: {ip_adapter}...")
|
70 |
self.pipe.load_ip_adapter(
|
71 |
"h94/IP-Adapter",
|
@@ -76,27 +108,19 @@ class Loader:
|
|
76 |
self.pipe.set_ip_adapter_scale(0.5)
|
77 |
self.ip_adapter = ip_adapter
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
|
93 |
-
attn_procs[name] = (
|
94 |
-
attn_processor_class
|
95 |
-
if isinstance(value, IPAdapterAttnProcessor2_0)
|
96 |
-
else value.__class__()
|
97 |
-
)
|
98 |
-
self.pipe.unet.set_attn_processor(attn_procs)
|
99 |
-
self.pipe.ip_adapter = None
|
100 |
|
101 |
def _load_vae(self, taesd=False, model_name=None, variant=None):
|
102 |
vae_type = type(self.pipe.vae)
|
@@ -127,16 +151,29 @@ class Loader:
|
|
127 |
model=model,
|
128 |
)
|
129 |
|
130 |
-
def
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
def load(
|
142 |
self,
|
@@ -153,6 +190,7 @@ class Loader:
|
|
153 |
dtype,
|
154 |
):
|
155 |
model_lower = model.lower()
|
|
|
156 |
|
157 |
schedulers = {
|
158 |
"DDIM": DDIMScheduler,
|
@@ -197,33 +235,27 @@ class Loader:
|
|
197 |
"variant": variant,
|
198 |
}
|
199 |
|
200 |
-
|
201 |
-
|
202 |
|
203 |
-
self._load_pipeline(kind, model_lower, device, **pipe_kwargs)
|
204 |
-
model_name = self.pipe.config._name_or_path
|
205 |
-
same_model = model_name.lower() == model_lower
|
206 |
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
|
207 |
same_karras = (
|
208 |
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
|
209 |
or self.pipe.scheduler.config.use_karras_sigmas == karras
|
210 |
)
|
211 |
|
212 |
-
|
|
|
213 |
if not same_scheduler:
|
214 |
print(f"Switching to {scheduler}...")
|
215 |
if not same_karras:
|
216 |
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
|
217 |
if not same_scheduler or not same_karras:
|
218 |
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
219 |
-
else:
|
220 |
-
self.pipe = None
|
221 |
-
self._load_pipeline(kind, model_lower, device, **pipe_kwargs)
|
222 |
|
|
|
223 |
self._load_ip_adapter(ip_adapter)
|
224 |
self._load_vae(taesd, model_lower, variant)
|
225 |
self._load_freeu(freeu)
|
226 |
self._load_deepcache(deepcache)
|
227 |
-
self._load_upscaler(device, scale)
|
228 |
-
torch.cuda.empty_cache()
|
229 |
return self.pipe, self.upscaler
|
|
|
18 |
|
19 |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")
|
20 |
|
21 |
+
PIPELINES = {
|
22 |
+
"txt2img": StableDiffusionPipeline,
|
23 |
+
"img2img": StableDiffusionImg2ImgPipeline,
|
24 |
+
}
|
25 |
+
|
26 |
|
|
|
|
|
27 |
class Loader:
|
28 |
_instance = None
|
29 |
|
|
|
35 |
cls._instance.ip_adapter = None
|
36 |
return cls._instance
|
37 |
|
38 |
+
def _should_unload_upscaler(self, scale=1):
|
39 |
+
return self.upscaler is not None and scale == 1
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
def _should_unload_ip_adapter(self, ip_adapter=None):
|
42 |
+
return self.ip_adapter is not None and ip_adapter is None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
def _should_unload_pipeline(self, kind="", model=""):
|
45 |
+
if self.pipe is None:
|
46 |
+
return False
|
47 |
+
if self.pipe.config._name_or_path.lower() != model.lower():
|
48 |
+
return True
|
49 |
+
if kind == "txt2img" and not isinstance(self.pipe, StableDiffusionPipeline):
|
50 |
+
return True # txt2img -> img2img
|
51 |
+
if kind == "img2img" and not isinstance(self.pipe, StableDiffusionImg2ImgPipeline):
|
52 |
+
return True # img2img -> txt2img
|
53 |
+
return False
|
54 |
+
|
55 |
+
def _unload_ip_adapter(self):
|
56 |
+
print("Unloading IP Adapter...")
|
57 |
+
if not isinstance(self.pipe, StableDiffusionImg2ImgPipeline):
|
58 |
+
self.pipe.image_encoder = None
|
59 |
+
self.pipe.register_to_config(image_encoder=[None, None])
|
60 |
+
|
61 |
+
self.pipe.feature_extractor = None
|
62 |
+
self.pipe.unet.encoder_hid_proj = None
|
63 |
+
self.pipe.unet.config.encoder_hid_dim_type = None
|
64 |
+
self.pipe.register_to_config(feature_extractor=[None, None])
|
65 |
+
|
66 |
+
attn_procs = {}
|
67 |
+
for name, value in self.pipe.unet.attn_processors.items():
|
68 |
+
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
|
69 |
+
attn_procs[name] = (
|
70 |
+
attn_processor_class
|
71 |
+
if isinstance(value, IPAdapterAttnProcessor2_0)
|
72 |
+
else value.__class__()
|
73 |
+
)
|
74 |
+
self.pipe.unet.set_attn_processor(attn_procs)
|
75 |
+
|
76 |
+
def _unload(self, kind="", model="", ip_adapter=None, scale=1):
|
77 |
+
to_unload = []
|
78 |
+
|
79 |
+
if self._should_unload_upscaler(scale):
|
80 |
+
to_unload.append("upscaler")
|
81 |
+
|
82 |
+
if self._should_unload_ip_adapter(ip_adapter):
|
83 |
+
self._unload_ip_adapter()
|
84 |
+
to_unload.append("ip_adapter")
|
85 |
+
|
86 |
+
if self._should_unload_pipeline(kind, model):
|
87 |
+
to_unload.append("pipe")
|
88 |
+
|
89 |
+
for component in to_unload:
|
90 |
+
if hasattr(self, component):
|
91 |
+
delattr(self, component)
|
92 |
+
|
93 |
+
torch.cuda.empty_cache()
|
94 |
+
torch.cuda.ipc_collect()
|
95 |
+
|
96 |
+
for component in to_unload:
|
97 |
+
setattr(self, component, None)
|
98 |
|
99 |
def _load_ip_adapter(self, ip_adapter=None):
|
100 |
+
if self.ip_adapter is None and ip_adapter is not None:
|
101 |
print(f"Loading IP Adapter: {ip_adapter}...")
|
102 |
self.pipe.load_ip_adapter(
|
103 |
"h94/IP-Adapter",
|
|
|
108 |
self.pipe.set_ip_adapter_scale(0.5)
|
109 |
self.ip_adapter = ip_adapter
|
110 |
|
111 |
+
def _load_upscaler(self, device=None, scale=1):
|
112 |
+
if scale > 1 and self.upscaler is None:
|
113 |
+
print(f"Loading {scale}x upscaler...")
|
114 |
+
self.upscaler = RealESRGAN(device=device, scale=scale)
|
115 |
+
self.upscaler.load_weights()
|
116 |
+
|
117 |
+
def _load_pipeline(self, kind, model, taesd, device, **kwargs):
|
118 |
+
pipeline = PIPELINES[kind]
|
119 |
+
if self.pipe is None:
|
120 |
+
print(f"Loading {model.lower()} with {'Tiny' if taesd else 'KL'} VAE...")
|
121 |
+
self.pipe = pipeline.from_pretrained(model, **kwargs).to(device)
|
122 |
+
if not isinstance(self.pipe, pipeline):
|
123 |
+
self.pipe = pipeline.from_pipe(self.pipe).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def _load_vae(self, taesd=False, model_name=None, variant=None):
|
126 |
vae_type = type(self.pipe.vae)
|
|
|
151 |
model=model,
|
152 |
)
|
153 |
|
154 |
+
def _load_deepcache(self, interval=1):
|
155 |
+
has_deepcache = hasattr(self.pipe, "deepcache")
|
156 |
+
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
|
157 |
+
return
|
158 |
+
if has_deepcache:
|
159 |
+
self.pipe.deepcache.disable()
|
160 |
+
else:
|
161 |
+
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
|
162 |
+
self.pipe.deepcache.set_params(cache_interval=interval)
|
163 |
+
self.pipe.deepcache.enable()
|
164 |
+
|
165 |
+
def _load_freeu(self, freeu=False):
|
166 |
+
# https://github.com/huggingface/diffusers/blob/v0.30.0/src/diffusers/models/unets/unet_2d_condition.py
|
167 |
+
block = self.pipe.unet.up_blocks[0]
|
168 |
+
attrs = ["b1", "b2", "s1", "s2"]
|
169 |
+
has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
|
170 |
+
if has_freeu and not freeu:
|
171 |
+
print("Disabling FreeU...")
|
172 |
+
self.pipe.disable_freeu()
|
173 |
+
elif not has_freeu and freeu:
|
174 |
+
# https://github.com/ChenyangSi/FreeU
|
175 |
+
print("Enabling FreeU...")
|
176 |
+
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
|
177 |
|
178 |
def load(
|
179 |
self,
|
|
|
190 |
dtype,
|
191 |
):
|
192 |
model_lower = model.lower()
|
193 |
+
model_name = self.pipe.config._name_or_path.lower() if self.pipe is not None else ""
|
194 |
|
195 |
schedulers = {
|
196 |
"DDIM": DDIMScheduler,
|
|
|
235 |
"variant": variant,
|
236 |
}
|
237 |
|
238 |
+
self._unload(kind, model, ip_adapter, scale)
|
239 |
+
self._load_pipeline(kind, model, taesd, device, **pipe_kwargs)
|
240 |
|
|
|
|
|
|
|
241 |
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
|
242 |
same_karras = (
|
243 |
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
|
244 |
or self.pipe.scheduler.config.use_karras_sigmas == karras
|
245 |
)
|
246 |
|
247 |
+
# same model, different scheduler
|
248 |
+
if model_name == model_lower:
|
249 |
if not same_scheduler:
|
250 |
print(f"Switching to {scheduler}...")
|
251 |
if not same_karras:
|
252 |
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
|
253 |
if not same_scheduler or not same_karras:
|
254 |
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
|
|
|
|
|
|
255 |
|
256 |
+
self._load_upscaler(device, scale)
|
257 |
self._load_ip_adapter(ip_adapter)
|
258 |
self._load_vae(taesd, model_lower, variant)
|
259 |
self._load_freeu(freeu)
|
260 |
self._load_deepcache(deepcache)
|
|
|
|
|
261 |
return self.pipe, self.upscaler
|