Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Add DeepCache and T-GATE
Browse files- app.css +1 -1
- app.py +109 -51
- generate.py +137 -68
- requirements.txt +2 -0
app.css
CHANGED
@@ -28,7 +28,7 @@
|
|
28 |
margin-left: 8px;
|
29 |
}
|
30 |
|
31 |
-
|
32 |
--block-border-width: 0px;
|
33 |
background-color: transparent;
|
34 |
}
|
|
|
28 |
margin-left: 8px;
|
29 |
}
|
30 |
|
31 |
+
.gallery {
|
32 |
--block-border-width: 0px;
|
33 |
background-color: transparent;
|
34 |
}
|
app.py
CHANGED
@@ -4,9 +4,11 @@ import gradio as gr
|
|
4 |
|
5 |
from generate import generate
|
6 |
|
|
|
|
|
7 |
# base font stacks
|
8 |
-
|
9 |
-
|
10 |
"sans-serif",
|
11 |
"Apple Color Emoji",
|
12 |
"Segoe UI Emoji",
|
@@ -42,96 +44,109 @@ def generate_btn_click(*args, **kwargs):
|
|
42 |
|
43 |
|
44 |
with gr.Blocks(
|
45 |
-
head=read_file("head.html"),
|
46 |
css="./app.css",
|
47 |
js="./app.js",
|
48 |
theme=gr.themes.Default(
|
49 |
# colors
|
|
|
50 |
primary_hue=gr.themes.colors.orange,
|
51 |
secondary_hue=gr.themes.colors.blue,
|
52 |
-
neutral_hue=gr.themes.colors.gray,
|
53 |
# sizing
|
54 |
text_size=gr.themes.sizes.text_md,
|
55 |
-
spacing_size=gr.themes.sizes.spacing_md,
|
56 |
radius_size=gr.themes.sizes.radius_sm,
|
|
|
57 |
# fonts
|
58 |
-
font=[gr.themes.GoogleFont("Inter"), *
|
59 |
-
font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *
|
60 |
).set(
|
61 |
-
block_background_fill=gr.themes.colors.gray.c50,
|
62 |
-
block_background_fill_dark=gr.themes.colors.gray.c900,
|
63 |
block_shadow="0 0 #0000",
|
64 |
block_shadow_dark="0 0 #0000",
|
|
|
|
|
65 |
),
|
66 |
) as demo:
|
67 |
-
gr.HTML(read_file("intro.html"))
|
68 |
output_images = gr.Gallery(
|
69 |
-
|
70 |
-
show_label=False,
|
71 |
-
columns=1,
|
72 |
-
interactive=False,
|
73 |
show_share_button=False,
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
)
|
76 |
prompt = gr.Textbox(
|
77 |
-
|
78 |
show_label=False,
|
79 |
-
|
80 |
-
placeholder="corgi, at the beach, cute",
|
81 |
value=None,
|
|
|
82 |
)
|
83 |
generate_btn = gr.Button("Generate", variant="primary", elem_classes=[])
|
84 |
|
85 |
with gr.Accordion(
|
|
|
|
|
86 |
label="Menu",
|
87 |
open=False,
|
88 |
-
elem_id="menu",
|
89 |
-
elem_classes=["accordion"],
|
90 |
):
|
91 |
with gr.Tabs():
|
92 |
with gr.TabItem("⚙️ Settings"):
|
93 |
with gr.Group():
|
94 |
negative_prompt = gr.Textbox(
|
95 |
label="Negative Prompt",
|
|
|
|
|
96 |
lines=1,
|
97 |
-
placeholder="ugly",
|
98 |
-
value="",
|
99 |
)
|
100 |
|
101 |
with gr.Row():
|
102 |
num_images = gr.Dropdown(
|
103 |
-
label="Images",
|
104 |
choices=[1, 2, 3, 4],
|
105 |
-
value=1,
|
106 |
filterable=False,
|
|
|
|
|
|
|
107 |
)
|
108 |
-
|
109 |
-
label="
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
-
seed = gr.Number(label="Seed", value=0)
|
115 |
|
116 |
with gr.Row():
|
117 |
guidance_scale = gr.Slider(
|
118 |
label="Guidance Scale",
|
119 |
minimum=1.0,
|
120 |
maximum=15.0,
|
121 |
-
step=0.1,
|
122 |
value=7.5,
|
|
|
123 |
)
|
124 |
inference_steps = gr.Slider(
|
125 |
label="Inference Steps",
|
126 |
minimum=1,
|
127 |
maximum=50,
|
128 |
-
step=1,
|
129 |
value=30,
|
|
|
130 |
)
|
131 |
|
132 |
with gr.Row():
|
133 |
model = gr.Dropdown(
|
|
|
134 |
label="Model",
|
|
|
135 |
choices=[
|
136 |
"fluently/Fluently-v4",
|
137 |
"Linaqruf/anything-v3-1",
|
@@ -140,10 +155,12 @@ with gr.Blocks(
|
|
140 |
"runwayml/stable-diffusion-v1-5",
|
141 |
"SG161222/Realistic_Vision_V5.1_Novae",
|
142 |
],
|
143 |
-
value="Lykon/dreamshaper-8",
|
144 |
)
|
145 |
scheduler = gr.Dropdown(
|
|
|
146 |
label="Scheduler",
|
|
|
|
|
147 |
choices=[
|
148 |
"DEIS 2M",
|
149 |
"DPM++ 2M",
|
@@ -153,22 +170,20 @@ with gr.Blocks(
|
|
153 |
"LMS",
|
154 |
"PNDM",
|
155 |
],
|
156 |
-
value="DEIS 2M",
|
157 |
-
elem_id="scheduler",
|
158 |
)
|
|
|
159 |
|
160 |
with gr.Row():
|
161 |
use_karras = gr.Checkbox(
|
162 |
-
label="Use Karras σ",
|
163 |
-
value=True,
|
164 |
elem_classes=["checkbox"],
|
165 |
-
|
|
|
|
|
166 |
)
|
167 |
increment_seed = gr.Checkbox(
|
168 |
-
label="Autoincrement seed",
|
169 |
-
value=True,
|
170 |
elem_classes=["checkbox"],
|
171 |
-
|
|
|
172 |
scale=2,
|
173 |
)
|
174 |
random_seed_btn = gr.Button(
|
@@ -179,21 +194,57 @@ with gr.Blocks(
|
|
179 |
)
|
180 |
|
181 |
with gr.TabItem("🛠️ Advanced"):
|
182 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
with gr.TabItem("ℹ️ Info"):
|
185 |
gr.Markdown(read_file("info.md"), elem_classes=["markdown"])
|
186 |
|
187 |
-
# change gallery columns when num_images changes
|
188 |
-
num_images.change(
|
189 |
-
lambda n: gr.Gallery(columns=n),
|
190 |
-
inputs=[num_images],
|
191 |
-
outputs=[output_images],
|
192 |
-
)
|
193 |
-
|
194 |
# update the random seed using JavaScript
|
195 |
random_seed_btn.click(None, outputs=[seed], js="() => Math.floor(Math.random() * 2**32)")
|
196 |
|
|
|
197 |
generate_btn.click(
|
198 |
generate_btn_click,
|
199 |
api_name="generate",
|
@@ -205,12 +256,19 @@ with gr.Blocks(
|
|
205 |
seed,
|
206 |
model,
|
207 |
scheduler,
|
208 |
-
|
|
|
209 |
guidance_scale,
|
210 |
inference_steps,
|
211 |
-
use_karras,
|
212 |
num_images,
|
|
|
|
|
|
|
|
|
213 |
increment_seed,
|
|
|
|
|
|
|
214 |
],
|
215 |
)
|
216 |
|
|
|
4 |
|
5 |
from generate import generate
|
6 |
|
7 |
+
DEFAULT_NEGATIVE_PROMPT = "<bad_prompt>, ugly, unattractive, deformed, disfigured, mutated, blurry, distorted, noisy, grainy, glitch, worst quality"
|
8 |
+
|
9 |
# base font stacks
|
10 |
+
MONO_FONTS = ["monospace"]
|
11 |
+
SANS_FONTS = [
|
12 |
"sans-serif",
|
13 |
"Apple Color Emoji",
|
14 |
"Segoe UI Emoji",
|
|
|
44 |
|
45 |
|
46 |
with gr.Blocks(
|
47 |
+
head=read_file("./partials/head.html"),
|
48 |
css="./app.css",
|
49 |
js="./app.js",
|
50 |
theme=gr.themes.Default(
|
51 |
# colors
|
52 |
+
neutral_hue=gr.themes.colors.gray,
|
53 |
primary_hue=gr.themes.colors.orange,
|
54 |
secondary_hue=gr.themes.colors.blue,
|
|
|
55 |
# sizing
|
56 |
text_size=gr.themes.sizes.text_md,
|
|
|
57 |
radius_size=gr.themes.sizes.radius_sm,
|
58 |
+
spacing_size=gr.themes.sizes.spacing_md,
|
59 |
# fonts
|
60 |
+
font=[gr.themes.GoogleFont("Inter"), *SANS_FONTS],
|
61 |
+
font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *MONO_FONTS],
|
62 |
).set(
|
|
|
|
|
63 |
block_shadow="0 0 #0000",
|
64 |
block_shadow_dark="0 0 #0000",
|
65 |
+
block_background_fill=gr.themes.colors.gray.c50,
|
66 |
+
block_background_fill_dark=gr.themes.colors.gray.c900,
|
67 |
),
|
68 |
) as demo:
|
69 |
+
gr.HTML(read_file("./partials/intro.html"))
|
70 |
output_images = gr.Gallery(
|
71 |
+
elem_classes=["gallery"],
|
|
|
|
|
|
|
72 |
show_share_button=False,
|
73 |
+
interactive=False,
|
74 |
+
show_label=False,
|
75 |
+
label="Output",
|
76 |
+
format="png",
|
77 |
+
columns=2,
|
78 |
)
|
79 |
prompt = gr.Textbox(
|
80 |
+
placeholder="corgi, at the beach, cute, 8k",
|
81 |
show_label=False,
|
82 |
+
label="Prompt",
|
|
|
83 |
value=None,
|
84 |
+
lines=2,
|
85 |
)
|
86 |
generate_btn = gr.Button("Generate", variant="primary", elem_classes=[])
|
87 |
|
88 |
with gr.Accordion(
|
89 |
+
elem_classes=["accordion"],
|
90 |
+
elem_id="menu",
|
91 |
label="Menu",
|
92 |
open=False,
|
|
|
|
|
93 |
):
|
94 |
with gr.Tabs():
|
95 |
with gr.TabItem("⚙️ Settings"):
|
96 |
with gr.Group():
|
97 |
negative_prompt = gr.Textbox(
|
98 |
label="Negative Prompt",
|
99 |
+
value=DEFAULT_NEGATIVE_PROMPT,
|
100 |
+
placeholder="",
|
101 |
lines=1,
|
|
|
|
|
102 |
)
|
103 |
|
104 |
with gr.Row():
|
105 |
num_images = gr.Dropdown(
|
|
|
106 |
choices=[1, 2, 3, 4],
|
|
|
107 |
filterable=False,
|
108 |
+
label="Images",
|
109 |
+
value=1,
|
110 |
+
scale=1,
|
111 |
)
|
112 |
+
width = gr.Slider(
|
113 |
+
label="Width",
|
114 |
+
minimum=256,
|
115 |
+
maximum=1024,
|
116 |
+
value=512,
|
117 |
+
step=32,
|
118 |
+
scale=2,
|
119 |
+
)
|
120 |
+
height = gr.Slider(
|
121 |
+
label="Height",
|
122 |
+
minimum=256,
|
123 |
+
maximum=1024,
|
124 |
+
value=512,
|
125 |
+
step=32,
|
126 |
+
scale=2,
|
127 |
)
|
|
|
128 |
|
129 |
with gr.Row():
|
130 |
guidance_scale = gr.Slider(
|
131 |
label="Guidance Scale",
|
132 |
minimum=1.0,
|
133 |
maximum=15.0,
|
|
|
134 |
value=7.5,
|
135 |
+
step=0.1,
|
136 |
)
|
137 |
inference_steps = gr.Slider(
|
138 |
label="Inference Steps",
|
139 |
minimum=1,
|
140 |
maximum=50,
|
|
|
141 |
value=30,
|
142 |
+
step=1,
|
143 |
)
|
144 |
|
145 |
with gr.Row():
|
146 |
model = gr.Dropdown(
|
147 |
+
value="Lykon/dreamshaper-8",
|
148 |
label="Model",
|
149 |
+
scale=2,
|
150 |
choices=[
|
151 |
"fluently/Fluently-v4",
|
152 |
"Linaqruf/anything-v3-1",
|
|
|
155 |
"runwayml/stable-diffusion-v1-5",
|
156 |
"SG161222/Realistic_Vision_V5.1_Novae",
|
157 |
],
|
|
|
158 |
)
|
159 |
scheduler = gr.Dropdown(
|
160 |
+
elem_id="scheduler",
|
161 |
label="Scheduler",
|
162 |
+
value="DEIS 2M",
|
163 |
+
scale=2,
|
164 |
choices=[
|
165 |
"DEIS 2M",
|
166 |
"DPM++ 2M",
|
|
|
170 |
"LMS",
|
171 |
"PNDM",
|
172 |
],
|
|
|
|
|
173 |
)
|
174 |
+
seed = gr.Number(label="Seed", value=42)
|
175 |
|
176 |
with gr.Row():
|
177 |
use_karras = gr.Checkbox(
|
|
|
|
|
178 |
elem_classes=["checkbox"],
|
179 |
+
label="Karras σ",
|
180 |
+
value=True,
|
181 |
+
scale=1,
|
182 |
)
|
183 |
increment_seed = gr.Checkbox(
|
|
|
|
|
184 |
elem_classes=["checkbox"],
|
185 |
+
label="Autoincrement",
|
186 |
+
value=True,
|
187 |
scale=2,
|
188 |
)
|
189 |
random_seed_btn = gr.Button(
|
|
|
194 |
)
|
195 |
|
196 |
with gr.TabItem("🛠️ Advanced"):
|
197 |
+
with gr.Group():
|
198 |
+
with gr.Row():
|
199 |
+
deep_cache_interval = gr.Slider(
|
200 |
+
label="DeepCache Interval",
|
201 |
+
minimum=1,
|
202 |
+
maximum=4,
|
203 |
+
value=0,
|
204 |
+
step=1,
|
205 |
+
)
|
206 |
+
deep_cache_branch = gr.Slider(
|
207 |
+
label="DeepCache Branch",
|
208 |
+
minimum=0,
|
209 |
+
maximum=3,
|
210 |
+
value=0,
|
211 |
+
step=1,
|
212 |
+
)
|
213 |
+
tgate_step = gr.Slider(
|
214 |
+
label="T-GATE Step",
|
215 |
+
minimum=0,
|
216 |
+
maximum=50,
|
217 |
+
value=0,
|
218 |
+
step=1,
|
219 |
+
)
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
use_taesd = gr.Checkbox(
|
223 |
+
elem_classes=["checkbox"],
|
224 |
+
label="Tiny VAE",
|
225 |
+
value=False,
|
226 |
+
scale=1,
|
227 |
+
)
|
228 |
+
use_clip_skip = gr.Checkbox(
|
229 |
+
elem_classes=["checkbox"],
|
230 |
+
label="Clip skip",
|
231 |
+
value=False,
|
232 |
+
scale=1,
|
233 |
+
)
|
234 |
+
truncate_prompts = gr.Checkbox(
|
235 |
+
elem_classes=["checkbox"],
|
236 |
+
label="Truncate prompts",
|
237 |
+
value=False,
|
238 |
+
scale=3,
|
239 |
+
)
|
240 |
|
241 |
with gr.TabItem("ℹ️ Info"):
|
242 |
gr.Markdown(read_file("info.md"), elem_classes=["markdown"])
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
# update the random seed using JavaScript
|
245 |
random_seed_btn.click(None, outputs=[seed], js="() => Math.floor(Math.random() * 2**32)")
|
246 |
|
247 |
+
# ensure correct argument order
|
248 |
generate_btn.click(
|
249 |
generate_btn_click,
|
250 |
api_name="generate",
|
|
|
256 |
seed,
|
257 |
model,
|
258 |
scheduler,
|
259 |
+
width,
|
260 |
+
height,
|
261 |
guidance_scale,
|
262 |
inference_steps,
|
|
|
263 |
num_images,
|
264 |
+
use_karras,
|
265 |
+
use_taesd,
|
266 |
+
use_clip_skip,
|
267 |
+
truncate_prompts,
|
268 |
increment_seed,
|
269 |
+
deep_cache_interval,
|
270 |
+
deep_cache_branch,
|
271 |
+
tgate_step,
|
272 |
],
|
273 |
)
|
274 |
|
generate.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import re
|
|
|
2 |
from datetime import datetime
|
3 |
from itertools import product
|
4 |
from os import environ
|
|
|
5 |
from warnings import filterwarnings
|
6 |
|
7 |
import spaces
|
8 |
import torch
|
9 |
-
from compel import Compel
|
|
|
10 |
from diffusers import (
|
11 |
DEISMultistepScheduler,
|
12 |
DPMSolverMultistepScheduler,
|
@@ -17,18 +20,23 @@ from diffusers import (
|
|
17 |
PNDMScheduler,
|
18 |
StableDiffusionPipeline,
|
19 |
)
|
20 |
-
from diffusers.models import AutoencoderTiny
|
|
|
|
|
|
|
21 |
|
22 |
ZERO_GPU = (
|
23 |
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
|
24 |
or environ.get("SPACES_ZERO_GPU", "") == "1"
|
25 |
)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
|
33 |
# some models use the deprecated CLIPFeatureExtractor class
|
34 |
# should use CLIPImageProcessor instead
|
@@ -46,7 +54,27 @@ class Loader:
|
|
46 |
cls._instance.pipe = None
|
47 |
return cls._instance
|
48 |
|
49 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
model_lower = model.lower()
|
51 |
|
52 |
schedulers = {
|
@@ -60,24 +88,24 @@ class Loader:
|
|
60 |
}
|
61 |
|
62 |
scheduler_kwargs = {
|
63 |
-
"beta_start": 0.00085,
|
64 |
-
"beta_end": 0.012,
|
65 |
"beta_schedule": "scaled_linear",
|
66 |
"timestep_spacing": "leading",
|
67 |
-
"steps_offset": 1,
|
68 |
"use_karras_sigmas": karras,
|
|
|
|
|
|
|
69 |
}
|
70 |
|
71 |
if scheduler == "PNDM" or scheduler == "Euler a":
|
72 |
del scheduler_kwargs["use_karras_sigmas"]
|
73 |
|
74 |
pipe_kwargs = {
|
|
|
75 |
"pretrained_model_name_or_path": model_lower,
|
76 |
"requires_safety_checker": False,
|
77 |
-
"safety_checker": None,
|
78 |
-
"scheduler": schedulers[scheduler](**scheduler_kwargs),
|
79 |
-
"torch_dtype": TORCH_DTYPE,
|
80 |
"use_safetensors": True,
|
|
|
|
|
81 |
}
|
82 |
|
83 |
# already loaded
|
@@ -92,11 +120,19 @@ class Loader:
|
|
92 |
|
93 |
if same_model:
|
94 |
if not same_scheduler:
|
95 |
-
print(f"
|
96 |
-
|
97 |
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
|
98 |
-
|
99 |
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
return self.pipe
|
101 |
else:
|
102 |
print(f"Unloading {model_name.lower()}...")
|
@@ -111,39 +147,51 @@ class Loader:
|
|
111 |
]:
|
112 |
pipe_kwargs["variant"] = "fp16"
|
113 |
|
114 |
-
|
115 |
-
if model_lower not in ["linaqruf/anything-v3-1"]:
|
116 |
-
pipe_kwargs["vae"] = AutoencoderTiny.from_pretrained(
|
117 |
-
"madebyollin/taesd",
|
118 |
-
torch_dtype=TORCH_DTYPE,
|
119 |
-
use_safetensors=True,
|
120 |
-
)
|
121 |
-
|
122 |
-
print(f"Loading {model_lower}...")
|
123 |
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
|
|
|
|
|
|
|
|
|
|
|
124 |
return self.pipe
|
125 |
|
126 |
|
127 |
-
|
128 |
-
def
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
|
133 |
# parse prompts with arrays
|
134 |
def parse_prompt(prompt: str) -> list[str]:
|
135 |
-
|
136 |
-
arrays = re.findall(r"\[\[(.*?)\]\]", joined_prompt)
|
137 |
|
138 |
if not arrays:
|
139 |
-
return [
|
140 |
|
141 |
tokens = [item.split(",") for item in arrays]
|
142 |
combinations = list(product(*tokens))
|
143 |
prompts = []
|
144 |
|
145 |
for combo in combinations:
|
146 |
-
current_prompt =
|
147 |
for i, token in enumerate(combo):
|
148 |
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
|
149 |
|
@@ -156,55 +204,65 @@ def generate(
|
|
156 |
positive_prompt,
|
157 |
negative_prompt="",
|
158 |
seed=None,
|
159 |
-
model="
|
160 |
scheduler="DEIS 2M",
|
161 |
-
|
|
|
162 |
guidance_scale=7.5,
|
163 |
inference_steps=30,
|
164 |
-
karras=True,
|
165 |
num_images=1,
|
|
|
|
|
|
|
|
|
166 |
increment_seed=True,
|
|
|
|
|
|
|
167 |
Error=Exception,
|
168 |
):
|
169 |
if not torch.cuda.is_available():
|
170 |
raise Error("CUDA not available")
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
with torch.inference_mode():
|
183 |
loader = Loader()
|
184 |
-
pipe = loader.load(model, scheduler, karras)
|
185 |
|
186 |
# prompt embeds
|
187 |
compel = Compel(
|
188 |
-
|
|
|
|
|
|
|
189 |
text_encoder=pipe.text_encoder,
|
190 |
-
|
191 |
device=pipe.device,
|
192 |
-
dtype_for_device_getter=lambda _: TORCH_DTYPE,
|
193 |
)
|
194 |
|
195 |
-
neg_prompt = join_prompt(negative_prompt)
|
196 |
-
neg_embeds = compel(neg_prompt)
|
197 |
-
|
198 |
-
if seed is None:
|
199 |
-
seed = int(datetime.now().timestamp())
|
200 |
-
|
201 |
-
current_seed = seed
|
202 |
images = []
|
|
|
|
|
203 |
|
204 |
for i in range(num_images):
|
|
|
205 |
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
|
206 |
|
207 |
-
#
|
208 |
all_positive_prompts = parse_prompt(positive_prompt)
|
209 |
prompt_index = i % len(all_positive_prompts)
|
210 |
pos_prompt = all_positive_prompts[prompt_index]
|
@@ -213,16 +271,27 @@ def generate(
|
|
213 |
[pos_embeds, neg_embeds]
|
214 |
)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
if increment_seed:
|
228 |
current_seed += 1
|
|
|
1 |
import re
|
2 |
+
from contextlib import contextmanager
|
3 |
from datetime import datetime
|
4 |
from itertools import product
|
5 |
from os import environ
|
6 |
+
from types import MethodType
|
7 |
from warnings import filterwarnings
|
8 |
|
9 |
import spaces
|
10 |
import torch
|
11 |
+
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
|
12 |
+
from DeepCache import DeepCacheSDHelper
|
13 |
from diffusers import (
|
14 |
DEISMultistepScheduler,
|
15 |
DPMSolverMultistepScheduler,
|
|
|
20 |
PNDMScheduler,
|
21 |
StableDiffusionPipeline,
|
22 |
)
|
23 |
+
from diffusers.models import AutoencoderKL, AutoencoderTiny
|
24 |
+
from tgate.SD import tgate as tgate_sd
|
25 |
+
from tgate.SD_DeepCache import tgate as tgate_sd_deepcache
|
26 |
+
from torch._dynamo import OptimizedModule
|
27 |
|
28 |
ZERO_GPU = (
|
29 |
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
|
30 |
or environ.get("SPACES_ZERO_GPU", "") == "1"
|
31 |
)
|
32 |
|
33 |
+
EMBEDDINGS = {
|
34 |
+
"./embeddings/bad_prompt_version2.pt": "<bad_prompt>",
|
35 |
+
"./embeddings/BadDream.pt": "<bad_dream>",
|
36 |
+
"./embeddings/FastNegativeV2.pt": "<fast_negative>",
|
37 |
+
"./embeddings/negative_hand.pt": "<negative_hand>",
|
38 |
+
"./embeddings/UnrealisticDream.pt": "<unrealistic_dream>",
|
39 |
+
}
|
40 |
|
41 |
# some models use the deprecated CLIPFeatureExtractor class
|
42 |
# should use CLIPImageProcessor instead
|
|
|
54 |
cls._instance.pipe = None
|
55 |
return cls._instance
|
56 |
|
57 |
+
def _load_vae(self, model_name=None, taesd=False, dtype=None):
|
58 |
+
if taesd:
|
59 |
+
# can't compile tiny VAE
|
60 |
+
return AutoencoderTiny.from_pretrained(
|
61 |
+
pretrained_model_name_or_path="madebyollin/taesd",
|
62 |
+
use_safetensors=True,
|
63 |
+
torch_dtype=dtype,
|
64 |
+
).to(self.gpu)
|
65 |
+
|
66 |
+
return torch.compile(
|
67 |
+
fullgraph=True,
|
68 |
+
mode="reduce-overhead",
|
69 |
+
model=AutoencoderKL.from_pretrained(
|
70 |
+
pretrained_model_name_or_path=model_name,
|
71 |
+
use_safetensors=True,
|
72 |
+
torch_dtype=dtype,
|
73 |
+
subfolder="vae",
|
74 |
+
).to(self.gpu),
|
75 |
+
)
|
76 |
+
|
77 |
+
def load(self, model, scheduler, karras, taesd, dtype=None):
|
78 |
model_lower = model.lower()
|
79 |
|
80 |
schedulers = {
|
|
|
88 |
}
|
89 |
|
90 |
scheduler_kwargs = {
|
|
|
|
|
91 |
"beta_schedule": "scaled_linear",
|
92 |
"timestep_spacing": "leading",
|
|
|
93 |
"use_karras_sigmas": karras,
|
94 |
+
"beta_start": 0.00085,
|
95 |
+
"beta_end": 0.012,
|
96 |
+
"steps_offset": 1,
|
97 |
}
|
98 |
|
99 |
if scheduler == "PNDM" or scheduler == "Euler a":
|
100 |
del scheduler_kwargs["use_karras_sigmas"]
|
101 |
|
102 |
pipe_kwargs = {
|
103 |
+
"scheduler": schedulers[scheduler](**scheduler_kwargs),
|
104 |
"pretrained_model_name_or_path": model_lower,
|
105 |
"requires_safety_checker": False,
|
|
|
|
|
|
|
106 |
"use_safetensors": True,
|
107 |
+
"safety_checker": None,
|
108 |
+
"torch_dtype": dtype,
|
109 |
}
|
110 |
|
111 |
# already loaded
|
|
|
120 |
|
121 |
if same_model:
|
122 |
if not same_scheduler:
|
123 |
+
print(f"Switching to {scheduler}...")
|
124 |
+
if not same_karras:
|
125 |
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
|
126 |
+
if not same_scheduler or not same_karras:
|
127 |
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
128 |
+
|
129 |
+
# if compiled will be an OptimizedModule
|
130 |
+
vae_type = type(self.pipe.vae)
|
131 |
+
if (issubclass(vae_type, (AutoencoderKL, OptimizedModule)) and taesd) or (
|
132 |
+
issubclass(vae_type, AutoencoderTiny) and not taesd
|
133 |
+
):
|
134 |
+
print(f"Switching to {'Tiny' if taesd else 'KL'} VAE...")
|
135 |
+
self.pipe.vae = self._load_vae(model_lower, taesd, dtype)
|
136 |
return self.pipe
|
137 |
else:
|
138 |
print(f"Unloading {model_name.lower()}...")
|
|
|
147 |
]:
|
148 |
pipe_kwargs["variant"] = "fp16"
|
149 |
|
150 |
+
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
|
152 |
+
self.pipe.vae = self._load_vae(model_lower, taesd, dtype)
|
153 |
+
self.pipe.load_textual_inversion(
|
154 |
+
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
|
155 |
+
tokens=list(EMBEDDINGS.values()),
|
156 |
+
)
|
157 |
return self.pipe
|
158 |
|
159 |
|
160 |
+
@contextmanager
|
161 |
+
def deep_cache(pipe, interval=1, branch=0, tgate_step=0):
|
162 |
+
if interval > 1:
|
163 |
+
helper = DeepCacheSDHelper(pipe=pipe)
|
164 |
+
helper.set_params(cache_interval=interval, cache_branch_id=branch)
|
165 |
+
helper.enable()
|
166 |
+
|
167 |
+
if tgate_step > 0:
|
168 |
+
pipe.deepcache = helper
|
169 |
+
pipe.tgate = MethodType(tgate_sd_deepcache, pipe)
|
170 |
+
|
171 |
+
try:
|
172 |
+
yield helper
|
173 |
+
finally:
|
174 |
+
helper.disable()
|
175 |
+
elif interval < 2 and tgate_step > 0:
|
176 |
+
pipe.tgate = MethodType(tgate_sd, pipe)
|
177 |
+
yield None
|
178 |
+
else:
|
179 |
+
yield None
|
180 |
|
181 |
|
182 |
# parse prompts with arrays
|
183 |
def parse_prompt(prompt: str) -> list[str]:
|
184 |
+
arrays = re.findall(r"\[\[(.*?)\]\]", prompt)
|
|
|
185 |
|
186 |
if not arrays:
|
187 |
+
return [prompt]
|
188 |
|
189 |
tokens = [item.split(",") for item in arrays]
|
190 |
combinations = list(product(*tokens))
|
191 |
prompts = []
|
192 |
|
193 |
for combo in combinations:
|
194 |
+
current_prompt = prompt
|
195 |
for i, token in enumerate(combo):
|
196 |
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
|
197 |
|
|
|
204 |
positive_prompt,
|
205 |
negative_prompt="",
|
206 |
seed=None,
|
207 |
+
model="Lykon/dreamshaper-8",
|
208 |
scheduler="DEIS 2M",
|
209 |
+
width=512,
|
210 |
+
height=512,
|
211 |
guidance_scale=7.5,
|
212 |
inference_steps=30,
|
|
|
213 |
num_images=1,
|
214 |
+
karras=True,
|
215 |
+
taesd=False,
|
216 |
+
clip_skip=False,
|
217 |
+
truncate_prompts=False,
|
218 |
increment_seed=True,
|
219 |
+
deep_cache_interval=1,
|
220 |
+
deep_cache_branch=0,
|
221 |
+
tgate_step=0,
|
222 |
Error=Exception,
|
223 |
):
|
224 |
if not torch.cuda.is_available():
|
225 |
raise Error("CUDA not available")
|
226 |
|
227 |
+
if seed is None:
|
228 |
+
seed = int(datetime.now().timestamp())
|
229 |
+
|
230 |
+
TORCH_DTYPE = (
|
231 |
+
torch.bfloat16
|
232 |
+
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
|
233 |
+
else torch.float16
|
234 |
+
)
|
235 |
+
|
236 |
+
EMBEDDINGS_TYPE = (
|
237 |
+
ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NORMALIZED
|
238 |
+
if clip_skip
|
239 |
+
else ReturnedEmbeddingsType.LAST_HIDDEN_STATES_NORMALIZED
|
240 |
+
)
|
241 |
|
242 |
with torch.inference_mode():
|
243 |
loader = Loader()
|
244 |
+
pipe = loader.load(model, scheduler, karras, taesd, dtype=TORCH_DTYPE)
|
245 |
|
246 |
# prompt embeds
|
247 |
compel = Compel(
|
248 |
+
textual_inversion_manager=DiffusersTextualInversionManager(pipe),
|
249 |
+
dtype_for_device_getter=lambda _: TORCH_DTYPE,
|
250 |
+
returned_embeddings_type=EMBEDDINGS_TYPE,
|
251 |
+
truncate_long_prompts=truncate_prompts,
|
252 |
text_encoder=pipe.text_encoder,
|
253 |
+
tokenizer=pipe.tokenizer,
|
254 |
device=pipe.device,
|
|
|
255 |
)
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
images = []
|
258 |
+
current_seed = seed
|
259 |
+
neg_embeds = compel(negative_prompt)
|
260 |
|
261 |
for i in range(num_images):
|
262 |
+
# seeded generator for each iteration
|
263 |
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
|
264 |
|
265 |
+
# get the prompt for this iteration
|
266 |
all_positive_prompts = parse_prompt(positive_prompt)
|
267 |
prompt_index = i % len(all_positive_prompts)
|
268 |
pos_prompt = all_positive_prompts[prompt_index]
|
|
|
271 |
[pos_embeds, neg_embeds]
|
272 |
)
|
273 |
|
274 |
+
with deep_cache(
|
275 |
+
pipe,
|
276 |
+
interval=deep_cache_interval,
|
277 |
+
branch=deep_cache_branch,
|
278 |
+
tgate_step=tgate_step,
|
279 |
+
):
|
280 |
+
pipe_kwargs = {
|
281 |
+
"num_inference_steps": inference_steps,
|
282 |
+
"negative_prompt_embeds": neg_embeds,
|
283 |
+
"guidance_scale": guidance_scale,
|
284 |
+
"prompt_embeds": pos_embeds,
|
285 |
+
"generator": generator,
|
286 |
+
"height": height,
|
287 |
+
"width": width,
|
288 |
+
}
|
289 |
+
result = (
|
290 |
+
pipe.tgate(**pipe_kwargs, gate_step=tgate_step)
|
291 |
+
if tgate_step > 0
|
292 |
+
else pipe(**pipe_kwargs)
|
293 |
+
)
|
294 |
+
images.append((result.images[0], str(current_seed)))
|
295 |
|
296 |
if increment_seed:
|
297 |
current_seed += 1
|
requirements.txt
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
accelerate
|
2 |
compel
|
|
|
3 |
diffusers
|
4 |
hf-transfer
|
5 |
gradio
|
6 |
ruff
|
7 |
scipy # for LMS scheduler
|
8 |
spaces
|
|
|
9 |
torch
|
10 |
torchvision
|
11 |
transformers
|
|
|
1 |
accelerate
|
2 |
compel
|
3 |
+
deepcache
|
4 |
diffusers
|
5 |
hf-transfer
|
6 |
gradio
|
7 |
ruff
|
8 |
scipy # for LMS scheduler
|
9 |
spaces
|
10 |
+
tgate
|
11 |
torch
|
12 |
torchvision
|
13 |
transformers
|