Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Remove tiny VAE
Browse files- DOCS.md +0 -4
- README.md +2 -3
- app.py +0 -6
- lib/config.py +0 -1
- lib/inference.py +0 -2
- lib/loader.py +19 -47
DOCS.md
CHANGED
@@ -95,7 +95,3 @@ Enable `Use negative TI` to append [`fast_negative`](https://civitai.com/models/
|
|
95 |
#### Clip Skip
|
96 |
|
97 |
When enabled, the last CLIP layer is skipped. Can sometimes improve image quality.
|
98 |
-
|
99 |
-
#### Tiny VAE
|
100 |
-
|
101 |
-
Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for near-instant latent decoding with a minor loss in detail. Useful for development.
|
|
|
95 |
#### Clip Skip
|
96 |
|
97 |
When enabled, the last CLIP layer is skipped. Can sometimes improve image quality.
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -60,14 +60,13 @@ preload_from_hub: # up to 10
|
|
60 |
# diffusion
|
61 |
|
62 |
Gradio app for Stable Diffusion 1.5 featuring:
|
63 |
-
* txt2img and img2img pipelines with
|
64 |
-
* Canny edge detection (more preprocessors coming soon)
|
65 |
* Compel prompt weighting
|
66 |
* Hand-written style templates
|
67 |
* Multiple samplers with Karras scheduling
|
68 |
* DeepCache, FreeU, and Clip Skip available
|
69 |
* Real-ESRGAN upscaling
|
70 |
-
* Optional tiny autoencoder
|
71 |
|
72 |
## Usage
|
73 |
|
|
|
60 |
# diffusion
|
61 |
|
62 |
Gradio app for Stable Diffusion 1.5 featuring:
|
63 |
+
* txt2img and img2img pipelines with IP-Adapter
|
64 |
+
* ControlNet with Canny edge detection (more preprocessors coming soon)
|
65 |
* Compel prompt weighting
|
66 |
* Hand-written style templates
|
67 |
* Multiple samplers with Karras scheduling
|
68 |
* DeepCache, FreeU, and Clip Skip available
|
69 |
* Real-ESRGAN upscaling
|
|
|
70 |
|
71 |
## Usage
|
72 |
|
app.py
CHANGED
@@ -302,11 +302,6 @@ with gr.Blocks(
|
|
302 |
label="Use negative TI",
|
303 |
value=False,
|
304 |
)
|
305 |
-
use_taesd = gr.Checkbox(
|
306 |
-
elem_classes=["checkbox"],
|
307 |
-
label="Tiny VAE",
|
308 |
-
value=False,
|
309 |
-
)
|
310 |
use_freeu = gr.Checkbox(
|
311 |
elem_classes=["checkbox"],
|
312 |
label="FreeU",
|
@@ -456,7 +451,6 @@ with gr.Blocks(
|
|
456 |
scale,
|
457 |
num_images,
|
458 |
use_karras,
|
459 |
-
use_taesd,
|
460 |
use_freeu,
|
461 |
use_clip_skip,
|
462 |
use_ip_face,
|
|
|
302 |
label="Use negative TI",
|
303 |
value=False,
|
304 |
)
|
|
|
|
|
|
|
|
|
|
|
305 |
use_freeu = gr.Checkbox(
|
306 |
elem_classes=["checkbox"],
|
307 |
label="FreeU",
|
|
|
451 |
scale,
|
452 |
num_images,
|
453 |
use_karras,
|
|
|
454 |
use_freeu,
|
455 |
use_clip_skip,
|
456 |
use_ip_face,
|
lib/config.py
CHANGED
@@ -68,7 +68,6 @@ Config = SimpleNamespace(
|
|
68 |
"Linaqruf/anything-v3-1": ["anything-v3-2.safetensors"],
|
69 |
"lllyasviel/control_v11p_sd15_canny": ["diffusion_pytorch_model.fp16.safetensors"],
|
70 |
"Lykon/dreamshaper-8": [*sd_files],
|
71 |
-
"madebyollin/taesd": ["diffusion_pytorch_model.safetensors"],
|
72 |
"prompthero/openjourney-v4": ["openjourney-v4.ckpt"],
|
73 |
"SG161222/Realistic_Vision_V5.1_noVAE": ["Realistic_Vision_V5.1_fp16-no-ema.safetensors"],
|
74 |
"XpucT/Deliberate": ["Deliberate_v6.safetensors"],
|
|
|
68 |
"Linaqruf/anything-v3-1": ["anything-v3-2.safetensors"],
|
69 |
"lllyasviel/control_v11p_sd15_canny": ["diffusion_pytorch_model.fp16.safetensors"],
|
70 |
"Lykon/dreamshaper-8": [*sd_files],
|
|
|
71 |
"prompthero/openjourney-v4": ["openjourney-v4.ckpt"],
|
72 |
"SG161222/Realistic_Vision_V5.1_noVAE": ["Realistic_Vision_V5.1_fp16-no-ema.safetensors"],
|
73 |
"XpucT/Deliberate": ["Deliberate_v6.safetensors"],
|
lib/inference.py
CHANGED
@@ -80,7 +80,6 @@ def generate(
|
|
80 |
scale=1,
|
81 |
num_images=1,
|
82 |
karras=False,
|
83 |
-
taesd=False,
|
84 |
freeu=False,
|
85 |
clip_skip=False,
|
86 |
ip_face=False,
|
@@ -144,7 +143,6 @@ def generate(
|
|
144 |
deepcache,
|
145 |
scale,
|
146 |
karras,
|
147 |
-
taesd,
|
148 |
freeu,
|
149 |
progress,
|
150 |
)
|
|
|
80 |
scale=1,
|
81 |
num_images=1,
|
82 |
karras=False,
|
|
|
83 |
freeu=False,
|
84 |
clip_skip=False,
|
85 |
ip_face=False,
|
|
|
143 |
deepcache,
|
144 |
scale,
|
145 |
karras,
|
|
|
146 |
freeu,
|
147 |
progress,
|
148 |
)
|
lib/loader.py
CHANGED
@@ -4,7 +4,7 @@ from threading import Lock
|
|
4 |
import torch
|
5 |
from DeepCache import DeepCacheSDHelper
|
6 |
from diffusers import ControlNetModel
|
7 |
-
from diffusers.models import AutoencoderKL
|
8 |
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
|
9 |
|
10 |
from .config import Config
|
@@ -29,20 +29,6 @@ class Loader:
|
|
29 |
cls._instance.log = Logger("Loader")
|
30 |
return cls._instance
|
31 |
|
32 |
-
@property
|
33 |
-
def _is_kl_vae(self):
|
34 |
-
if self.pipe is not None:
|
35 |
-
vae_type = type(self.pipe.vae)
|
36 |
-
return issubclass(vae_type, AutoencoderKL)
|
37 |
-
return False
|
38 |
-
|
39 |
-
@property
|
40 |
-
def _is_tiny_vae(self):
|
41 |
-
if self.pipe is not None:
|
42 |
-
vae_type = type(self.pipe.vae)
|
43 |
-
return issubclass(vae_type, AutoencoderTiny)
|
44 |
-
return False
|
45 |
-
|
46 |
@property
|
47 |
def _has_freeu(self):
|
48 |
if self.pipe is not None:
|
@@ -184,6 +170,7 @@ class Loader:
|
|
184 |
to_unload.append("model")
|
185 |
to_unload.append("pipe")
|
186 |
|
|
|
187 |
clear_cuda_cache()
|
188 |
for component in to_unload:
|
189 |
setattr(self, component, None)
|
@@ -284,32 +271,22 @@ class Loader:
|
|
284 |
if self.pipe is not None:
|
285 |
self.pipe.set_progress_bar_config(disable=progress is not None)
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
self.pipe.vae =
|
293 |
-
|
294 |
torch_dtype=self.pipe.dtype,
|
295 |
).to(self.pipe.device)
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
|
304 |
-
torch_dtype=self.pipe.dtype,
|
305 |
-
).to(self.pipe.device)
|
306 |
-
else:
|
307 |
-
self.pipe.vae = AutoencoderKL.from_pretrained(
|
308 |
-
pretrained_model_name_or_path=model,
|
309 |
-
torch_dtype=self.pipe.dtype,
|
310 |
-
subfolder="vae",
|
311 |
-
variant="fp16",
|
312 |
-
).to(self.pipe.device)
|
313 |
|
314 |
def load(
|
315 |
self,
|
@@ -321,7 +298,6 @@ class Loader:
|
|
321 |
deepcache,
|
322 |
scale,
|
323 |
karras,
|
324 |
-
taesd,
|
325 |
freeu,
|
326 |
progress,
|
327 |
):
|
@@ -397,11 +373,12 @@ class Loader:
|
|
397 |
if not same_scheduler or not same_karras:
|
398 |
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
|
399 |
|
|
|
|
|
|
|
400 |
CURRENT_STEP = 1
|
401 |
TOTAL_STEPS = sum(
|
402 |
[
|
403 |
-
self._is_kl_vae and taesd,
|
404 |
-
self._is_tiny_vae and not taesd,
|
405 |
self._should_load_freeu(freeu),
|
406 |
self._should_load_deepcache(deepcache),
|
407 |
self._should_load_ip_adapter(ip_adapter),
|
@@ -428,8 +405,3 @@ class Loader:
|
|
428 |
if self._should_load_upscaler(scale):
|
429 |
self._load_upscaler(scale)
|
430 |
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
|
431 |
-
CURRENT_STEP += 1
|
432 |
-
|
433 |
-
if self._is_kl_vae and taesd or self._is_tiny_vae and not taesd:
|
434 |
-
self._load_vae(taesd, model)
|
435 |
-
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
|
|
|
4 |
import torch
|
5 |
from DeepCache import DeepCacheSDHelper
|
6 |
from diffusers import ControlNetModel
|
7 |
+
from diffusers.models import AutoencoderKL
|
8 |
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
|
9 |
|
10 |
from .config import Config
|
|
|
29 |
cls._instance.log = Logger("Loader")
|
30 |
return cls._instance
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
@property
|
33 |
def _has_freeu(self):
|
34 |
if self.pipe is not None:
|
|
|
170 |
to_unload.append("model")
|
171 |
to_unload.append("pipe")
|
172 |
|
173 |
+
# Flush cache and run garbage collector
|
174 |
clear_cuda_cache()
|
175 |
for component in to_unload:
|
176 |
setattr(self, component, None)
|
|
|
271 |
if self.pipe is not None:
|
272 |
self.pipe.set_progress_bar_config(disable=progress is not None)
|
273 |
|
274 |
+
# Handle single-file and diffusers-style models
|
275 |
+
def _load_vae(self, model=""):
|
276 |
+
msg = "Loading VAE"
|
277 |
+
with timer(msg, logger=self.log.info):
|
278 |
+
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
|
279 |
+
self.pipe.vae = AutoencoderKL.from_single_file(
|
280 |
+
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
|
281 |
torch_dtype=self.pipe.dtype,
|
282 |
).to(self.pipe.device)
|
283 |
+
else:
|
284 |
+
self.pipe.vae = AutoencoderKL.from_pretrained(
|
285 |
+
pretrained_model_name_or_path=model,
|
286 |
+
torch_dtype=self.pipe.dtype,
|
287 |
+
subfolder="vae",
|
288 |
+
variant="fp16",
|
289 |
+
).to(self.pipe.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
def load(
|
292 |
self,
|
|
|
298 |
deepcache,
|
299 |
scale,
|
300 |
karras,
|
|
|
301 |
freeu,
|
302 |
progress,
|
303 |
):
|
|
|
373 |
if not same_scheduler or not same_karras:
|
374 |
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
|
375 |
|
376 |
+
# Load VAE
|
377 |
+
self._load_vae(model)
|
378 |
+
|
379 |
CURRENT_STEP = 1
|
380 |
TOTAL_STEPS = sum(
|
381 |
[
|
|
|
|
|
382 |
self._should_load_freeu(freeu),
|
383 |
self._should_load_deepcache(deepcache),
|
384 |
self._should_load_ip_adapter(ip_adapter),
|
|
|
405 |
if self._should_load_upscaler(scale):
|
406 |
self._load_upscaler(scale)
|
407 |
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
|
|
|
|
|
|
|
|
|
|