Spaces:
Running
on
Zero
Running
on
Zero
# import gc | |
import torch | |
from DeepCache import DeepCacheSDHelper | |
from diffusers.models import AutoencoderKL | |
from .config import Config | |
from .logger import Logger | |
from .upscaler import RealESRGAN | |
from .utils import cuda_collect, timer | |
class Loader: | |
def __init__(self): | |
self.model = "" | |
self.refiner = None | |
self.pipeline = None | |
self.upscaler = None | |
self.log = Logger("Loader") | |
def should_unload_refiner(self, use_refiner=False): | |
return self.refiner is not None and not use_refiner | |
def should_unload_upscaler(self, scale=1): | |
return self.upscaler is not None and self.upscaler.scale != scale | |
def should_unload_deepcache(self, interval=1): | |
has_deepcache = hasattr(self.pipeline, "deepcache") | |
if has_deepcache and interval == 1: | |
return True | |
if has_deepcache and self.pipeline.deepcache.params["cache_interval"] != interval: | |
return True | |
return False | |
def should_unload_pipeline(self, model=""): | |
return self.pipeline is not None and self.model.lower() != model.lower() | |
def should_load_refiner(self, use_refiner=False): | |
return self.refiner is None and use_refiner | |
def should_load_upscaler(self, scale=1): | |
return self.upscaler is None and scale > 1 | |
def should_load_deepcache(self, interval=1): | |
has_deepcache = hasattr(self.pipeline, "deepcache") | |
if not has_deepcache and interval != 1: | |
return True | |
if has_deepcache and self.pipeline.deepcache.params["cache_interval"] != interval: | |
return True | |
return False | |
def should_load_pipeline(self): | |
return self.pipeline is None | |
def unload(self, model, use_refiner, deepcache_interval, scale): | |
needs_gc = False | |
if self.should_unload_deepcache(deepcache_interval): | |
self.log.info("Disabling DeepCache") | |
self.pipeline.deepcache.disable() | |
delattr(self.pipeline, "deepcache") | |
if self.refiner: | |
self.refiner.deepcache.disable() | |
delattr(self.refiner, "deepcache") | |
if self.should_unload_refiner(use_refiner): | |
with timer("Unloading refiner"): | |
self.refiner.to("cpu", silence_dtype_warnings=True) | |
self.refiner = None | |
needs_gc = True | |
if self.should_unload_upscaler(scale): | |
with timer(f"Unloading {self.upscaler.scale}x upscaler"): | |
self.upscaler.to("cpu") | |
self.upscaler = None | |
needs_gc = True | |
if self.should_unload_pipeline(model): | |
with timer(f"Unloading {self.model}"): | |
self.pipeline.to("cpu", silence_dtype_warnings=True) | |
if self.refiner: | |
self.refiner.vae = None | |
self.refiner.scheduler = None | |
self.refiner.tokenizer_2 = None | |
self.refiner.text_encoder_2 = None | |
self.pipeline = None | |
self.model = None | |
needs_gc = True | |
if needs_gc: | |
cuda_collect() | |
# gc.collect() | |
def load_refiner(self, refiner_kwargs={}, progress=None): | |
model = Config.REFINER_MODEL | |
try: | |
with timer(f"Loading {model}"): | |
Pipeline = Config.PIPELINES["img2img"] | |
self.refiner = Pipeline.from_pretrained(model, **refiner_kwargs).to("cuda") | |
except Exception as e: | |
self.log.error(f"Error loading {model}: {e}") | |
self.refiner = None | |
return | |
if self.refiner is not None: | |
self.refiner.set_progress_bar_config(disable=progress is not None) | |
def load_upscaler(self, scale=1): | |
if self.should_load_upscaler(scale): | |
try: | |
with timer(f"Loading {scale}x upscaler"): | |
self.upscaler = RealESRGAN(scale, device=self.pipeline.device) | |
self.upscaler.load_weights() | |
except Exception as e: | |
self.log.error(f"Error loading {scale}x upscaler: {e}") | |
self.upscaler = None | |
def load_deepcache(self, interval=1): | |
if self.should_load_deepcache(interval): | |
self.log.info("Enabling DeepCache") | |
self.pipeline.deepcache = DeepCacheSDHelper(pipe=self.pipeline) | |
self.pipeline.deepcache.set_params(cache_interval=interval) | |
self.pipeline.deepcache.enable() | |
if self.refiner: | |
self.refiner.deepcache = DeepCacheSDHelper(pipe=self.refiner) | |
self.refiner.deepcache.set_params(cache_interval=interval) | |
self.refiner.deepcache.enable() | |
def load(self, kind, model, scheduler, deepcache_interval, scale, use_karras, use_refiner, progress): | |
scheduler_kwargs = { | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"beta_schedule": "scaled_linear", | |
"timestep_spacing": "leading", | |
"steps_offset": 1, | |
} | |
if scheduler not in ["DDIM", "Euler a"]: | |
scheduler_kwargs["use_karras_sigmas"] = use_karras | |
if scheduler == "DDIM": | |
scheduler_kwargs["clip_sample"] = False | |
scheduler_kwargs["set_alpha_to_one"] = False | |
if model.lower() not in Config.SINGLE_FILE_MODELS: | |
variant = "fp16" | |
else: | |
variant = None | |
dtype = torch.float16 | |
pipe_kwargs = { | |
"variant": variant, | |
"torch_dtype": dtype, | |
"add_watermarker": False, | |
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs), | |
"vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype), | |
} | |
self.unload(model, use_refiner, deepcache_interval, scale) | |
Pipeline = Config.PIPELINES[kind] | |
Scheduler = Config.SCHEDULERS[scheduler] | |
try: | |
with timer(f"Loading {model}"): | |
self.model = model | |
if model.lower() in Config.SINGLE_FILE_MODELS: | |
checkpoint = Config.HF_REPOS[model][0] | |
self.pipeline = Pipeline.from_single_file( | |
f"https://huggingface.co/{model}/{checkpoint}", | |
**pipe_kwargs, | |
).to("cuda") | |
else: | |
self.pipeline = Pipeline.from_pretrained(model, **pipe_kwargs).to("cuda") | |
except Exception as e: | |
self.log.error(f"Error loading {model}: {e}") | |
self.model = None | |
self.pipeline = None | |
return | |
if not isinstance(self.pipeline, Pipeline): | |
self.pipeline = Pipeline.from_pipe(self.pipeline).to("cuda") | |
if self.pipeline is not None: | |
self.pipeline.set_progress_bar_config(disable=progress is not None) | |
# Check and update scheduler if necessary | |
same_scheduler = isinstance(self.pipeline.scheduler, Scheduler) | |
same_karras = ( | |
not hasattr(self.pipeline.scheduler.config, "use_karras_sigmas") | |
or self.pipeline.scheduler.config.use_karras_sigmas == use_karras | |
) | |
if self.model.lower() == model.lower(): | |
if not same_scheduler: | |
self.log.info(f"Enabling {scheduler}") | |
if not same_karras: | |
self.log.info(f"{'Enabling' if use_karras else 'Disabling'} Karras sigmas") | |
if not same_scheduler or not same_karras: | |
self.pipeline.scheduler = Scheduler(**scheduler_kwargs) | |
if self.refiner is not None: | |
self.refiner.scheduler = self.pipeline.scheduler | |
if self.should_load_refiner(use_refiner): | |
refiner_kwargs = { | |
"variant": "fp16", | |
"torch_dtype": dtype, | |
"add_watermarker": False, | |
"requires_aesthetics_score": True, | |
"force_zeros_for_empty_prompt": False, | |
"vae": self.pipeline.vae, | |
"scheduler": self.pipeline.scheduler, | |
"tokenizer_2": self.pipeline.tokenizer_2, | |
"text_encoder_2": self.pipeline.text_encoder_2, | |
} | |
self.load_refiner(refiner_kwargs, progress) | |
if self.should_load_deepcache(deepcache_interval): | |
self.load_deepcache(deepcache_interval) | |
if self.should_load_upscaler(scale): | |
self.load_upscaler(scale) | |