adaface-animate2 / adaface /arc2face_models.py
jefflee's picture
float32 unet
6896f2b
import torch
import torch.nn as nn
from transformers import CLIPTextModel
from transformers.models.clip.modeling_clip import CLIPAttention
from typing import Any, Callable, Dict, Optional, Tuple, Union, List
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
# from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask
_make_causal_mask = AttentionMaskConverter._make_causal_mask
_expand_mask = AttentionMaskConverter._expand_mask
from adaface.util import add_noise_to_tensor
# Extend CLIPAttention by using multiple k_proj and v_proj in each head.
# To avoid too much increase of computation, we don't extend q_proj.
class CLIPAttentionMKV(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, multiplier=2):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.multiplier = multiplier
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
# The (approximately) repeated token features are repeated along the last dim in tensor
# (multiplier * num_heads * head_dim), and then reshaped to (bsz, -1, num_heads, head_dim).
# Therefore, the "multiplier" dim is tucked into the seq_len dim, which looks like
# [token1_emb, token1_emb, token2_emb, token2_emb, ..., tokenN_emb, tokenN_emb].
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def extend_weights(self, clip_attn_layer, layer_idx, multiplier, noise_std=0.1,
noise_std_is_relative=True, keep_norm=False, verbose=False):
self.multiplier *= multiplier
# q_proj and out_proj are the same as the original CLIPAttention.
self.q_proj.weight.data = clip_attn_layer.q_proj.weight.data.clone()
self.q_proj.bias.data = clip_attn_layer.q_proj.bias.data.clone()
self.out_proj.weight.data = clip_attn_layer.out_proj.weight.data.clone()
self.out_proj.bias.data = clip_attn_layer.out_proj.bias.data.clone()
# bias doesn't need noise perturbation, as after the weights are noised,
# different copies of the weight/bias will receive different gradients,
# making the bias terms diverge and identifiable after training.
self.v_proj.bias.data = clip_attn_layer.v_proj.bias.data.repeat(multiplier)
self.k_proj.bias.data = clip_attn_layer.k_proj.bias.data.repeat(multiplier)
self.v_proj.weight.data = clip_attn_layer.v_proj.weight.data.repeat(multiplier, 1)
self.k_proj.weight.data = clip_attn_layer.k_proj.weight.data.repeat(multiplier, 1)
if noise_std > 0:
ORIG_V_SHAPE = list(clip_attn_layer.v_proj.weight.shape)
ORIG_V_SHAPE_D0 = ORIG_V_SHAPE[0]
# Adding noise to the extra copies of the weights (keep the first copy unchanged).
self.v_proj.weight.data[ORIG_V_SHAPE_D0:] = \
add_noise_to_tensor(self.v_proj.weight.data[ORIG_V_SHAPE_D0:],
noise_std, noise_std_is_relative, keep_norm)
if verbose:
NEW_V_SHAPE = list(self.v_proj.weight.shape)
NOISED_V_SHAPE = list(self.v_proj.weight.data[ORIG_V_SHAPE_D0:].shape)
print(f"Layer {layer_idx}: {NOISED_V_SHAPE} in {NEW_V_SHAPE} of v_proj is added with {noise_std} noise")
ORIG_K_SHAPE = list(clip_attn_layer.k_proj.weight.shape)
ORIG_K_SHAPE_D0 = ORIG_K_SHAPE[0]
# Adding noise to the extra copies of the weights.
self.k_proj.weight.data[ORIG_K_SHAPE_D0:] = \
add_noise_to_tensor(self.k_proj.weight.data[ORIG_K_SHAPE_D0:],
noise_std, noise_std_is_relative, keep_norm)
if verbose:
NEW_K_SHAPE = list(self.k_proj.weight.shape)
NOISED_K_SHAPE = list(self.k_proj.weight.data[ORIG_K_SHAPE_D0:].shape)
print(f"Layer {layer_idx}: {NOISED_K_SHAPE} in {NEW_K_SHAPE} of k_proj is added with {noise_std} noise")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
query_states = self.q_proj(hidden_states) * self.scale
# For key_states and value_states, the multiplier is absorbed into the seq_len (dim 1, shape specified as -1).
# [token0_head_emb, token0_head_emb, token1_head_emb, token1_head_emb, ..., tokenN-1_head_emb, tokenN-1_head_emb].
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
# src_len0 is the original src_len without the multiplier.
src_len0 = src_len // self.multiplier
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len0):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is"
f" {causal_attention_mask.size()}"
)
# The last dim of attn_weights corresponds to [token0, token0, token1, token1, ..., tokenN-1, tokenN-1].
# If reshaping it as (self.multiplier, src_len0), it will become
# [[token0, token0, token1, token1, ..., tokenN//2], [tokenN//2+1, tokenN//2+1, ..., tokenN-1, tokenN-1]],
# and the mask will be applied to wrong elements.
# If reshaping it as (src_len0, self.multiplier), it will become
# [[token0, token1, ..., tokenN-1], [token0, token1, ..., tokenN-1]], and then
# the mask at element i will mask all the multiplier elements at i, which is desired.
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + causal_attention_mask.unsqueeze(4)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len0):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + attention_mask.unsqueeze(4)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
class CLIPTextModelWrapper(CLIPTextModel):
# Adapted from https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/clip/modeling_clip.py#L812
# Modified to accept precomputed token embeddings "input_token_embs" as input or calculate them from input_ids and return them.
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
input_token_embs: Optional[torch.Tensor] = None,
hidden_state_layer_weights: Optional[torch.Tensor] = None,
return_token_embs: Optional[bool] = False,
) -> Union[Tuple, torch.Tensor, BaseModelOutputWithPooling]:
if return_token_embs:
return self.text_model.embeddings.token_embedding(input_ids)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.text_model.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.text_model.config.output_hidden_states
)
if hidden_state_layer_weights is not None:
output_hidden_states = True
return_dict = return_dict if return_dict is not None else self.text_model.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.text_model.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=input_token_embs)
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.text_model.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
# output_hidden_states is False by default, and only True if hidden_state_layer_weights is provided.
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If output_hidden_states is True, then encoder_outputs[0] is last_hidden_state [1, 22, 768].
# encoder_outputs[1] is hidden_states, which is a tuple of 13 hidden states, each being [1, 22, 768].
# encoder_outputs[0] == encoder_outputs[1][12].
if hidden_state_layer_weights is None:
last_hidden_state = encoder_outputs[0]
else:
num_hidden_state_layers = len(hidden_state_layer_weights)
last_hidden_states = encoder_outputs[1][-num_hidden_state_layers:]
hidden_state_layer_weights = hidden_state_layer_weights.to(last_hidden_states[0].dtype)
# Normalize the weights of to sum to 1 across layers.
# hidden_state_layer_weights: [3, 1] or [3, 768].
hidden_state_layer_weights = hidden_state_layer_weights / hidden_state_layer_weights.sum(dim=0, keepdim=True)
# [3, 1/768] -> [3, 1, 1, 1/768]
hidden_state_layer_weights = hidden_state_layer_weights.unsqueeze(1).unsqueeze(1)
# A weighted sum of last_hidden_states.
# [3, 1, 22, 768] * [3, 1, 1, 1/768] -> [3, 1, 22, 768] -> [1, 22, 768]
last_hidden_state = (torch.stack(last_hidden_states, dim=0) * hidden_state_layer_weights).sum(dim=0)
last_hidden_state = self.text_model.final_layer_norm(last_hidden_state)
# self.text_model.eos_token_id == 2 is True.
if self.text_model.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
else:
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.text_model.eos_token_id)
.int()
.argmax(dim=-1),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Applied to layers [begin_layer_idx, end_layer_idx) in the encoder.
# The layer indexed by end_layer_idx is not included.
# If both layer indices are -1, then apply to all layers (0-11).
def extend_clip_attention_MKV_multiplier(self, begin_layer_idx=-1, end_layer_idx=-1, multiplier=2, noise_std=0.1):
num_extended_layers = 0
for layer_idx, layer in enumerate(self.text_model.encoder.layers):
if begin_layer_idx >= 0 and layer_idx < begin_layer_idx:
continue
if end_layer_idx >= 0 and layer_idx >= end_layer_idx:
break
# This shouldn't happen, unless self_attn has already been extended as CLIPAttentionMKV.
if not isinstance(layer.self_attn, (CLIPAttention, CLIPAttentionMKV)):
breakpoint()
old_attn_layer = layer.self_attn
if not isinstance(old_attn_layer, CLIPAttentionMKV):
layer.self_attn = CLIPAttentionMKV(old_attn_layer.config, 1)
layer.self_attn.extend_weights(old_attn_layer, layer_idx, multiplier, noise_std, verbose=True)
num_extended_layers += 1
return num_extended_layers