adaface-animate / app.py
adaface-neurips
increase gpu duration to 90 seconds
798f7db
raw
history blame
21 kB
import gradio as gr
import spaces
css = '''
.gradio-container {width: 85% !important}
'''
from animatediff.utils.util import save_videos_grid
import random
from infer import load_model
MAX_SEED=10000
import uuid
from insightface.app import FaceAnalysis
import os
import os
import cv2
from diffusers.utils import load_image
from insightface.utils import face_align
from PIL import Image
import torch
import argparse
# From command line read command adaface_ckpt_path
parser = argparse.ArgumentParser()
parser.add_argument('--adaface_ckpt_path', type=str,
default='models/adaface/subjects-celebrity2024-05-16T17-22-46_zero3-ada-30000.pt')
# Don't use 'sd15' for base_model_type; it just generates messy videos.
parser.add_argument('--base_model_type', type=str, default='sar')
parser.add_argument('--adaface_base_model_type', type=str, default='sar')
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--ip', type=str, default="0.0.0.0")
args = parser.parse_args()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# model = load_model()
# This FaceAnalysis uses a different model from what AdaFace uses, but it's fine.
# This is just to crop the face areas from the uploaded images.
app = FaceAnalysis(name="buffalo_l", root='models/insightface', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(320, 320))
device = "cuda" if args.gpu is None else f"cuda:{args.gpu}"
id_animator, adaface = load_model(base_model_type=args.base_model_type,
adaface_base_model_type=args.adaface_base_model_type,
adaface_ckpt_path=args.adaface_ckpt_path,
device=device)
basedir = os.getcwd()
savedir = os.path.join(basedir,'samples')
os.makedirs(savedir, exist_ok=True)
#print(f"### Cleaning cached examples ...")
#os.system(f"rm -rf gradio_cached_examples/")
def swap_to_gallery(images):
# Update uploaded_files_gallery, show files, hide clear_button_column
# Or:
# Update uploaded_init_img_gallery, show init_img_files, hide init_clear_button_column
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(value=images, visible=False)
def remove_back_to_files():
# Hide uploaded_files_gallery, show clear_button_column, hide files, reset init_img_selected_idx
# Or:
# Hide uploaded_init_img_gallery, hide init_clear_button_column, show init_img_files, reset init_img_selected_idx
return gr.update(visible=False), gr.update(visible=False), gr.update(value=None, visible=True), gr.update(value="0")
def get_clicked_image(data: gr.SelectData):
return data.index
@spaces.GPU
def gen_init_images(uploaded_image_paths, prompt, adaface_id_cfg_scale, out_image_count=3):
if uploaded_image_paths is None:
print("No image uploaded")
return None, None, None
# uploaded_image_paths is a list of tuples:
# [('/tmp/gradio/249981e66a7c665aaaf1c7eaeb24949af4366c88/jensen huang.jpg', None)]
# Extract the file paths.
uploaded_image_paths = [path[0] for path in uploaded_image_paths]
adaface.generate_adaface_embeddings(image_folder=None, image_paths=uploaded_image_paths,
out_id_embs_scale=adaface_id_cfg_scale, update_text_encoder=True)
# Generate two images each time for the user to select from.
noise = torch.randn(out_image_count, 3, 512, 512)
# samples: A list of PIL Image instances.
samples = adaface(noise, prompt, out_image_count=out_image_count, verbose=True)
face_paths = []
for sample in samples:
random_name = str(uuid.uuid4())
face_path = os.path.join(savedir, f"{random_name}.jpg")
face_paths.append(face_path)
sample.save(face_path)
print(f"Generated init image: {face_path}")
# Update uploaded_init_img_gallery, update and hide init_img_files, hide init_clear_button_column
return gr.update(value=face_paths, visible=True), gr.update(value=face_paths, visible=False), gr.update(visible=True)
@spaces.GPU(duration=90)
def generate_image(image_container, uploaded_image_paths, init_img_file_paths, init_img_selected_idx,
init_image_strength, init_image_final_weight,
prompt, negative_prompt, num_steps, video_length, guidance_scale, seed, attn_scale, image_embed_scale,
is_adaface_enabled, adaface_ckpt_path, adaface_id_cfg_scale, adaface_power_scale,
adaface_anneal_steps, progress=gr.Progress(track_tqdm=True)):
prompt = prompt + " 8k uhd, high quality"
if " shot" not in prompt:
prompt = prompt + ", medium shot"
prompt_img_lists=[]
for path in uploaded_image_paths:
img = cv2.imread(path)
faces = app.get(img)
face_roi = face_align.norm_crop(img, faces[0]['kps'], 112)
random_name = str(uuid.uuid4())
face_path = os.path.join(savedir, f"{random_name}.jpg")
cv2.imwrite(face_path, face_roi)
# prompt_img_lists is a list of PIL images.
prompt_img_lists.append(load_image(face_path).resize((224,224)))
if adaface is None or not is_adaface_enabled:
adaface_prompt_embeds = None
else:
if adaface_ckpt_path != args.adaface_ckpt_path:
# Reload the embedding manager
adaface.load_subj_basis_generator(adaface_ckpt_path)
adaface.generate_adaface_embeddings(image_folder=None, image_paths=uploaded_image_paths,
out_id_embs_scale=adaface_id_cfg_scale, update_text_encoder=True)
# adaface_prompt_embeds: [1, 77, 768].
adaface_prompt_embeds, _ = adaface.encode_prompt(prompt)
# init_img_file_paths is a list of image paths. If not chose, init_img_file_paths is None.
if init_img_file_paths is not None:
init_img_selected_idx = int(init_img_selected_idx)
init_img_file_path = init_img_file_paths[init_img_selected_idx]
init_image = cv2.imread(init_img_file_path)
init_image = cv2.resize(init_image, (512, 512))
init_image = Image.fromarray(cv2.cvtColor(init_image, cv2.COLOR_BGR2RGB))
print(f"init_image: {init_img_file_path}")
else:
init_image = None
sample = id_animator.generate(prompt_img_lists,
init_image = init_image,
init_image_strength = (init_image_strength, init_image_final_weight),
prompt = prompt,
negative_prompt = negative_prompt,
adaface_embeds = adaface_prompt_embeds,
# adaface_scale is not so useful, and when it's set >= 2, weird artifacts appear.
# Here it's limited to 0.7~1.3.
adaface_scale = adaface_power_scale,
num_inference_steps = num_steps,
adaface_anneal_steps = adaface_anneal_steps,
seed=seed,
guidance_scale = guidance_scale,
width = 512,
height = 512,
video_length = video_length,
attn_scale = attn_scale,
image_embed_scale = image_embed_scale,
)
save_sample_path = os.path.join(savedir, f"{random_name}.mp4")
save_videos_grid(sample, save_sample_path)
return save_sample_path
def validate(prompt):
if not prompt:
raise gr.Error("Prompt cannot be blank")
examples = [
[
"demo/ann.png",
["demo/ann.png" ],
"A young girl with a passion for reading, curled up with a book in a cozy nook near a window",
"semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck,",
30,
8, 8290,1,16
],
[
"demo/lecun.png",
["demo/lecun.png" ],
"Iron Man soars through the clouds, his repulsors blazing",
"worst quality, low quality, jpeg artifacts, ugly, duplicate, blurry, long neck",
30,
8, 4993,0.7,16
],
[
"demo/mix.png",
["demo/lecun.png","demo/ann.png"],
"A musician playing a guitar, fingers deftly moving across the strings, producing a soulful melody",
"semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
30,
8, 1897,0.9,16
],
[
"demo/zendaya.png",
["demo/zendaya.png" ],
"A woman on a serene beach at sunset, the sky ablaze with hues of orange and purple.",
"semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
30,
8, 5992,1,16
],
[
"demo/qianlong.png",
["demo/qianlong.png" ],
"A chef in a white apron, complete with a toqueblanche, garnishing a gourmet dish",
"(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, UnrealisticDream",
30,
8, 1844,0.8,16
],
[
"demo/augustus.png",
["demo/augustus.png" ],
"A man with dyed pink and purple hair, styledin a high ponytail",
"semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
30,
8, 870,0.7,16
]
]
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# AdaFace-Animate: Zero-Shot Subject-Driven Video Generation for Humans
"""
)
gr.Markdown(
"""
❗️❗️❗️**Tips:**
- You can upload one or more subject images for generating ID-specific video.
- Try different parameter combinations for the best generation quality.
"""
)
with gr.Row():
with gr.Column():
files = gr.File(
label="Drag (Select) 1 or more photos of a person's face",
file_types=["image"],
file_count="multiple"
)
image_container = gr.Image(label="image container", sources="upload", type="numpy", height=256, visible=False)
uploaded_files_gallery = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
with gr.Column(visible=False) as clear_button_column:
remove_and_reupload = gr.ClearButton(value="Remove and upload subject images", components=files, size="sm")
init_img_files = gr.File(
label="Drag (Select) 1 image for initialization",
file_types=["image"],
file_count="multiple"
)
init_img_container = gr.Image(label="init image container", sources="upload", type="numpy", height=256, visible=False)
# Although there's only one image, we still use columns=3, to scale down the image size.
# Otherwise it will occupy the full width, and the gallery won't show the whole image.
uploaded_init_img_gallery = gr.Gallery(label="Init image", visible=False, columns=3, rows=1, height=200)
# placeholder is just hint, not the real value. So we use "value='0'" instead of "placeholder='0'".
init_img_selected_idx = gr.Textbox(label="Selected init image index", value="0", visible=False)
init_image_strength = gr.Slider(
label="Init Image Strength",
minimum=0,
maximum=3,
step=0.25,
value=1.5,
)
init_image_final_weight = gr.Slider(
label="Final Weight of the Init Image",
minimum=0,
maximum=0.25,
step=0.025,
value=0.1,
)
with gr.Column(visible=False) as init_clear_button_column:
remove_init_and_reupload = gr.ClearButton(value="Remove and upload new init image", components=init_img_files, size="sm")
with gr.Column(visible=True) as init_gen_button_column:
gen_init = gr.Button(value="Generate 3 new init images")
prompt = gr.Textbox(label="Prompt",
# info="Try something like 'a photo of a man/woman img', 'img' is the trigger word.",
placeholder="Iron Man soars through the clouds, his repulsors blazing.")
image_embed_scale = gr.Slider(
label="Image Embedding Scale",
minimum=0,
maximum=2,
step=0.1,
value=0.8,
)
attn_scale = gr.Slider(
label="Attention Processor Scale",
minimum=0,
maximum=2,
step=0.1,
value=0.8,
)
adaface_id_cfg_scale = gr.Slider(
label="AdaFace Embedding ID CFG Scale",
minimum=0.5,
maximum=6,
step=0.25,
value=1.5,
)
submit = gr.Button("Generate Video")
with gr.Accordion(open=False, label="Advanced Options"):
video_length = gr.Slider(
label="video_length",
minimum=16,
maximum=21,
step=1,
value=16,
)
is_adaface_enabled = gr.Checkbox(label="Enable AdaFace", value=True)
adaface_ckpt_path = gr.Textbox(
label="AdaFace ckpt Path",
placeholder=args.adaface_ckpt_path,
value=args.adaface_ckpt_path,
)
adaface_power_scale = gr.Slider(
label="AdaFace Embedding Power Scale",
minimum=0.7,
maximum=1.3,
step=0.1,
value=1,
)
# adaface_anneal_steps is no longer necessary, but we keep it here for future use.
adaface_anneal_steps = gr.Slider(
label="AdaFace Anneal Steps",
minimum=0,
maximum=2,
step=1,
value=0,
visible=False,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="face portrait, (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, bare breasts, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, long neck, UnrealisticDream",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=25,
maximum=100,
step=1,
value=40,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=4,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=985,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Column():
result_video = gr.Video(label="Generated Animation", interactive=False)
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files_gallery, clear_button_column, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery, clear_button_column, files, init_img_selected_idx])
init_img_files.upload(fn=swap_to_gallery, inputs=init_img_files, outputs=[uploaded_init_img_gallery, init_clear_button_column, init_img_files])
remove_init_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_init_img_gallery, init_clear_button_column,
init_img_files, init_img_selected_idx])
gen_init.click(fn=gen_init_images, inputs=[uploaded_files_gallery, prompt, adaface_id_cfg_scale],
outputs=[uploaded_init_img_gallery, init_img_files, init_clear_button_column])
uploaded_init_img_gallery.select(fn=get_clicked_image, inputs=None, outputs=init_img_selected_idx)
submit.click(fn=validate,
inputs=[prompt],outputs=None).success(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[image_container, files, init_img_files, init_img_selected_idx, init_image_strength, init_image_final_weight,
prompt, negative_prompt, num_steps, video_length, guidance_scale,
seed, attn_scale, image_embed_scale,
is_adaface_enabled, adaface_ckpt_path, adaface_id_cfg_scale, adaface_power_scale, adaface_anneal_steps],
outputs=[result_video]
)
gr.Examples( fn=generate_image, examples=[], #examples,
inputs=[image_container, files, init_img_files, init_img_selected_idx, init_image_strength, init_image_final_weight,
prompt, negative_prompt, num_steps, video_length, guidance_scale,
seed, attn_scale, image_embed_scale,
is_adaface_enabled, adaface_ckpt_path, adaface_id_cfg_scale, adaface_power_scale, adaface_anneal_steps],
outputs=[result_video], cache_examples=True )
demo.launch(share=True, server_name=args.ip, ssl_verify=False)