Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import AutoencoderKL, DDIMScheduler | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from animatediff.models.unet import UNet3DConditionModel | |
from omegaconf import OmegaConf | |
from animatediff.pipelines.pipeline_animation import AnimationPipeline | |
from animatediff.utils.util import load_weights | |
from safetensors import safe_open | |
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint | |
from faceadapter.face_adapter import FaceAdapterPlusForVideoLora | |
base_model_type_to_path = { | |
"sd15": "models/sd15-dste8-vae.safetensors", # LDM format. Needs to be converted. | |
"sar": "models/sar/sar.safetensors", # LDM format. Needs to be converted. | |
"rv51": "models/rv51/realisticVisionV51_v51VAE.safetensors" | |
} | |
def load_model(base_model_type="rv51", device="cuda"): | |
inference_config = "inference-v2.yaml" | |
sd_version = "animatediff/sd" | |
id_ckpt = "models/animator.ckpt" | |
image_encoder_path = "models/image_encoder" | |
base_model_path = base_model_type_to_path[base_model_type] | |
motion_module_path="models/v3_sd15_mm.ckpt" | |
motion_lora_path = "models/v3_sd15_adapter.ckpt" | |
inference_config = OmegaConf.load(inference_config) | |
tokenizer = CLIPTokenizer.from_pretrained(sd_version, subfolder="tokenizer",torch_dtype=torch.float16, | |
) | |
text_encoder = CLIPTextModel.from_pretrained(sd_version, subfolder="text_encoder",torch_dtype=torch.float16, | |
).to(device=device) | |
vae = AutoencoderKL.from_pretrained(sd_version, subfolder="vae",torch_dtype=torch.float16, | |
).to(device=device) | |
unet = UNet3DConditionModel.from_pretrained_2d(sd_version, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs) | |
).to(device=device) | |
# unet.to(dtype=torch.float16) does not work on hf spaces. | |
unet = unet.half() | |
pipeline = AnimationPipeline( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, | |
controlnet=None, | |
#beta_start=0.00085, beta_end=0.012, beta_schedule="linear",steps_offset=1 | |
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs) | |
# scheduler=DPMSolverMultistepScheduler(**OmegaConf.to_container(inference_config.DPMSolver_scheduler_kwargs) | |
# scheduler=EulerAncestralDiscreteScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs) | |
# scheduler=EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="linear",steps_offset=1 | |
), | |
torch_dtype=torch.float16, | |
).to(device=device) | |
pipeline = load_weights( | |
pipeline, | |
# motion module | |
motion_module_path = motion_module_path, | |
motion_module_lora_configs = [], | |
# domain adapter | |
adapter_lora_path = motion_lora_path, | |
adapter_lora_scale = 1, | |
# image layers | |
dreambooth_model_path = None, | |
lora_model_path = "", | |
lora_alpha = 0.8 | |
).to(device=device) | |
if base_model_path != "": | |
print(f"load dreambooth model from {base_model_path}") | |
dreambooth_state_dict = {} | |
with safe_open(base_model_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
dreambooth_state_dict[key] = f.get_tensor(key) | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, pipeline.vae.config) | |
# print(vae) | |
#vae ->to_q,to_k,to_v | |
# print(converted_vae_checkpoint) | |
convert_vae_keys = list(converted_vae_checkpoint.keys()) | |
for key in convert_vae_keys: | |
if "encoder.mid_block.attentions" in key or "decoder.mid_block.attentions" in key: | |
new_key = None | |
if "key" in key: | |
new_key = key.replace("key","to_k") | |
elif "query" in key: | |
new_key = key.replace("query","to_q") | |
elif "value" in key: | |
new_key = key.replace("value","to_v") | |
elif "proj_attn" in key: | |
new_key = key.replace("proj_attn","to_out.0") | |
if new_key: | |
converted_vae_checkpoint[new_key] = converted_vae_checkpoint.pop(key) | |
pipeline.vae.load_state_dict(converted_vae_checkpoint) | |
converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, pipeline.unet.config) | |
pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False) | |
pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict, dtype=torch.float16).to(device=device) | |
del dreambooth_state_dict | |
pipeline = pipeline.to(torch.float16) | |
id_animator = FaceAdapterPlusForVideoLora(pipeline, image_encoder_path, id_ckpt, num_tokens=16, | |
device=torch.device(device), torch_type=torch.float16) | |
return id_animator | |