adaface-animate / faceadapter /face_adapter.py
adaface-neurips
re-init
02cc20b
raw
history blame
18 kB
import os
from typing import List
import torch
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.controlnet import MultiControlNetModel
from PIL import Image
from safetensors import safe_open
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from .attention_processor import LoRAFaceAttnProcessor
from .utils import is_torch2_available, get_generator
if is_torch2_available():
from .attention_processor import (
AttnProcessor2_0 as AttnProcessor,
)
else:
from .attention_processor import AttnProcessor
from .resampler import Resampler
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.generator = None
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
torch.nn.GELU(),
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
torch.nn.LayerNorm(cross_attention_dim)
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class FaceAdapterLora:
def __init__(self, sd_pipe, image_encoder_path, id_ckpt, device, num_tokens=4,torch_type=torch.float32):
self.device = device
self.image_encoder_path = image_encoder_path
self.id_ckpt = id_ckpt
self.num_tokens = num_tokens
self.torch_type = torch_type
self.pipe = sd_pipe.to(self.device)
self.set_face_adapter()
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=self.torch_type
)
self.clip_image_processor = CLIPImageProcessor()
# image proj model
self.image_proj_model = self.init_proj()
self.load_face_adapter()
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
clip_embeddings_dim=self.image_encoder.config.projection_dim,
clip_extra_context_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_type)
return image_proj_model
def set_face_adapter(self):
unet = self.pipe.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor().to(self.device, dtype=self.torch_type)
else:
attn_procs[name] = LoRAFaceAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=128, num_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_type)
unet.set_attn_processor(attn_procs)
def load_face_adapter(self):
state_dict = torch.load(self.id_ckpt, map_location="cpu")
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
image_proj_dict={}
face_adapter_proj={}
for k,v in state_dict.items():
if k.startswith("module.image_proj_model"):
image_proj_dict[k.replace("module.image_proj_model.", "")] = state_dict[k]
elif k.startswith("module.adapter_modules."):
face_adapter_proj[k.replace("module.adapter_modules.", "")] = state_dict[k]
elif k.startswith("image_proj_model"):
image_proj_dict[k.replace("image_proj_model.", "")] = state_dict[k]
elif k.startswith("adapter_modules."):
face_adapter_proj[k.replace("adapter_modules.", "")] = state_dict[k]
else:
print("ERROR!")
return
state_dict = {}
state_dict['image_proj'] = image_proj_dict
state_dict["face_adapter"] = face_adapter_proj
self.image_proj_model.load_state_dict(state_dict["image_proj"])
adapter_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
adapter_layers.load_state_dict(state_dict["face_adapter"],strict=False)
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if pil_image is not None:
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.torch_type)).image_embeds
else:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=self.torch_type)
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
# This scales the face-adapter face_hidden_states (attn output). attn_processor.scale: default 1.0.
# faceadapter/attention_processor.py:L283.
def set_attn_scale(self, attn_scale):
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, LoRAFaceAttnProcessor):
attn_processor.scale = attn_scale
def generate(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
attn_scale=1,
num_samples=4,
seed=None,
guidance_scale=7.5,
num_inference_steps=30,
**kwargs,
):
self.set_attn_scale(attn_scale)
if pil_image is not None:
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
else:
num_prompts = clip_image_embeds.size(0)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_images_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
**kwargs,
).images
return images
class FaceAdapterPlusForVideoLora(FaceAdapterLora):
def init_proj(self):
image_proj_model = Resampler(
dim=self.pipe.unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.num_tokens,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4,
).to(self.device, dtype=self.torch_type)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.torch_type)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = self.image_encoder(
torch.zeros_like(clip_image), output_hidden_states=True
).hidden_states[-2]
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
def generate(
self,
pil_image=None,
init_image=None,
init_image_strength=1.,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
adaface_embeds=None,
adaface_scale=1.0,
attn_scale=1.0,
num_samples=1,
seed=None,
guidance_scale=4,
num_inference_steps=30,
adaface_anneal_steps=0,
width=512,
height=512,
video_length=16,
image_embed_scale=1,
controlnet_images: torch.FloatTensor = None,
controlnet_image_index: list = [0],
**kwargs,
):
self.set_attn_scale(attn_scale)
num_prompts=1
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
num_prompt_img = len(pil_image)
total_image_prompt_embeds = 0
for i in range(num_prompt_img):
prompt_img = pil_image[i]
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=prompt_img, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
total_image_prompt_embeds += image_prompt_embeds
total_image_prompt_embeds /= num_prompt_img
image_prompt_embeds = total_image_prompt_embeds
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
# if do_classifier_free_guidance,
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method.
# https://github.com/huggingface/diffusers/blob/70f8d4b488f03730ae3bc11d4d707bafe153d10d/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L469
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_videos_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
if adaface_embeds is not None:
prompt_embeds0_ = prompt_embeds_
# self.torch_type == torch.float16. adaface_embeds is torch.float32.
prompt_embeds_ = adaface_embeds.repeat(num_samples, 1, 1).to(dtype=self.torch_type) * adaface_scale
# Scale down ID-Animator's face embeddings, so that they don't dominate the generation.
# Note to balance image_prompt_embeds with uncond_image_prompt_embeds after scaling.
image_prompt_embeds = image_prompt_embeds * image_embed_scale + uncond_image_prompt_embeds * (1 - image_embed_scale)
# We still need uncond_image_prompt_embeds, otherwise the output is blank.
prompt_embeds_end = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
prompt_embeds_begin = torch.cat([prompt_embeds0_, torch.zeros_like(image_prompt_embeds)], dim=1)
prompt_embeds = (prompt_embeds_begin, prompt_embeds_end, adaface_anneal_steps)
else:
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
# prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
video = self.pipe(
init_image=init_image,
init_image_strength=init_image_strength,
prompt = "",
prompt_embeds = prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
width = width,
height=height,
video_length = video_length,
controlnet_images = controlnet_images,
controlnet_image_index=controlnet_image_index,
**kwargs,
).videos
return video
def generate_video_edit(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
attn_scale=1.0,
num_samples=1,
seed=None,
guidance_scale=7.5,
num_inference_steps=30,
width=512,
height=512,
video_length=16,
video_latents=None,
**kwargs,
):
self.set_attn_scale(attn_scale)
if pil_image is not None:
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
else:
num_prompts = clip_image_embeds.size(0)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_videos_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
video = self.pipe.video_edit(
prompt = "",
prompt_embeds = prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
width = width,
height=height,
video_length = video_length,
latents=video_latents,
**kwargs,
).videos
return video