lxe commited on
Commit
3644ff3
·
1 Parent(s): bf9d89b

Add page title and generation slider info

Browse files
Files changed (1) hide show
  1. main.py +9 -6
main.py CHANGED
@@ -269,7 +269,10 @@ def tokenize_and_train(
269
  return result
270
 
271
 
272
- with gr.Blocks(css="#refresh-button { max-width: 32px }") as demo:
 
 
 
273
  with gr.Tab("Finetuning"):
274
 
275
  with gr.Column():
@@ -379,31 +382,31 @@ with gr.Blocks(css="#refresh-button { max-width: 32px }") as demo:
379
  temperature = gr.Slider(
380
  minimum=0, maximum=1.99, value=0.7, step=0.01,
381
  label="Temperature",
382
- info=""
383
  )
384
 
385
  top_p = gr.Slider(
386
  minimum=0, maximum=1, value=0.2, step=0.01,
387
  label="Top P",
388
- info=""
389
  )
390
 
391
  top_k = gr.Slider(
392
  minimum=0, maximum=200, value=50, step=1,
393
  label="Top K",
394
- info=""
395
  )
396
 
397
  repeat_penalty = gr.Slider(
398
  minimum=0, maximum=1.5, value=0.8, step=0.01,
399
  label="Repeat Penalty",
400
- info=""
401
  )
402
 
403
  max_new_tokens = gr.Slider(
404
  minimum=0, maximum=4096, value=50, step=1,
405
  label="Max New Tokens",
406
- info=""
407
  )
408
  with gr.Column():
409
  with gr.Row():
 
269
  return result
270
 
271
 
272
+ with gr.Blocks(
273
+ css="#refresh-button { max-width: 32px }",
274
+ title="Simple LLaMA Finetuner") as demo:
275
+
276
  with gr.Tab("Finetuning"):
277
 
278
  with gr.Column():
 
382
  temperature = gr.Slider(
383
  minimum=0, maximum=1.99, value=0.7, step=0.01,
384
  label="Temperature",
385
+ info="Controls the 'temperature' of the softmax distribution during sampling. Higher values (e.g., 1.0) make the model generate more diverse and random outputs, while lower values (e.g., 0.1) make it more deterministic and focused on the highest probability tokens."
386
  )
387
 
388
  top_p = gr.Slider(
389
  minimum=0, maximum=1, value=0.2, step=0.01,
390
  label="Top P",
391
+ info="Sets the nucleus sampling threshold. In nucleus sampling, only the tokens whose cumulative probability exceeds 'top_p' are considered for sampling. This technique helps to reduce the number of low probability tokens considered during sampling, which can lead to more diverse and coherent outputs."
392
  )
393
 
394
  top_k = gr.Slider(
395
  minimum=0, maximum=200, value=50, step=1,
396
  label="Top K",
397
+ info="Sets the number of top tokens to consider during sampling. In top-k sampling, only the 'top_k' tokens with the highest probabilities are considered for sampling. This method can lead to more focused and coherent outputs by reducing the impact of low probability tokens."
398
  )
399
 
400
  repeat_penalty = gr.Slider(
401
  minimum=0, maximum=1.5, value=0.8, step=0.01,
402
  label="Repeat Penalty",
403
+ info="Applies a penalty to the probability of tokens that have already been generated, discouraging the model from repeating the same words or phrases. The penalty is applied by dividing the token probability by a factor based on the number of times the token has appeared in the generated text."
404
  )
405
 
406
  max_new_tokens = gr.Slider(
407
  minimum=0, maximum=4096, value=50, step=1,
408
  label="Max New Tokens",
409
+ info="Limits the maximum number of tokens generated in a single iteration."
410
  )
411
  with gr.Column():
412
  with gr.Row():