webhook / main.py
osanseviero's picture
Update main.py
be54656
raw
history blame
4.02 kB
import os
from fastapi import FastAPI, Request, Response
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow as tf
from datasets import load_dataset
from huggingface_hub import push_to_hub_keras
KEY = os.environ.get("WEBHOOK_SECRET")
app = FastAPI()
def to_numpy(examples):
examples["pixel_values"] = [np.array(image) for image in examples["image"]]
return examples
def preprocess():
test_dataset = load_dataset("active-learning/test_mnist")
train_dataset = load_dataset("active-learning/labeled_samples")
train_dataset = train_dataset.map(to_numpy, batched=True)
test_dataset = test_dataset.map(to_numpy, batched=True)
x_train = train_dataset["train"]["pixel_values"]
y_train = train_dataset["train"]["label"]
x_test = test_dataset["test"]["pixel_values"]
y_test = test_dataset["test"]["label"]
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
num_classes = 10
input_shape = (28, 28, 1)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
return x_train, y_train, x_test, y_test
def train():
x_train, y_train, x_test, y_test = preprocess()
model = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),
]
)
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1)
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
push_to_hub_keras(model, "active-learning/mnist_classifier")
def find_samples_to_label():
loaded_model = from_pretrained_keras("active-learning/mnist_classifier")
loaded_model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
unlabeled_data = load_dataset("active-learning/unlabeled_samples")["train"]
processed_data = unlabeled_data.map(to_numpy, batched=True)
processed_data = processed_data["pixel_values"]
processed_data = tf.expand_dims(processed_data, -1)
# Get all predictions
# And then get the 5 samples with the lowest prediction score
preds = loaded_model.predict(unlabeled_data)
top_pred_confs = 1 - np.max(preds, axis=1)
idx_to_label = np.argpartition(top_pred_confs, -5)[-5:]
# Upload samples to the dataset to label
to_label_data = unlabeled_data.select(idx_to_label)
to_label_data.push_to_hub("active-learning/to_label_samples")
# Remove from the pool of samples
unlabeled_data = unlabeled_data.select(
(
i for i in range(len(unlabeled_data))
if i not in set(idx_to_label)
)
)
unlabeled_data.push_to_hub("active-learning/unlabeled_samples")
@app.get("/")
def read_root():
data = """
<h2 style="text-align:center">Active Learning Trainer</h2>
<p style="text-align:center">This is a demo app showing how to webhooks to do Active Learning.</p>
"""
return Response(content=data, media_type="text/html")
@app.post("/webhook")
async def webhook(request: Request):
print("Received request")
if request.headers.get("X-Webhook-Secret") is None:
return Response("No secret", status_code=401)
if request.headers.get("X-Webhook-Secret") != KEY:
return Response("Invalid secret", status_code=401)
data = await request.json()
print("Webhook received!")
train()
find_samples_to_label()
return "Webhook received!" if result else result