aciang's picture
Math Fast Agent (Phi) pinned & streaming
d14f8c9 verified
import os, torch, gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, BitsAndBytesConfig
TITLE = os.getenv("SPACE_TITLE", "LanguageBridge — Math Fast Agent (Phi-3.5)")
MODEL_ID = os.getenv("MODEL_ID", "microsoft/phi-3.5-mini-instruct")
SYSTEM = (
"你是數學與規則推理助教。原則:"
"1) 先『列出必要步驟』;2) 再給『最終答案』;3) 嚴禁瞎掰,資訊不足要明說。"
)
def load_llm():
bnb = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16
)
kwargs = dict(device_map="auto", quantization_config=bnb, trust_remote_code=False)
try:
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
except Exception as e:
print("[4-bit failed] → fallback:", e)
kwargs.pop("quantization_config", None)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=False
)
tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
if tok.pad_token is None: tok.pad_token = tok.eos_token
tok.padding_side = "left"
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
model.config.use_cache = True
return tok, model
tokenizer, llm = load_llm(); llm.eval()
def format_prompt(q:str)->str:
return f"{SYSTEM}\n\n題目:{q}\n請照原則作答:"
@torch.inference_mode()
def stream_answer(q, mx=192, temp=0.1, top_p=0.9):
prompt = format_prompt(q)
inputs = tokenizer(prompt, return_tensors="pt").to(llm.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen = dict(
**inputs, streamer=streamer, max_new_tokens=int(mx),
temperature=float(temp), top_p=float(top_p),
do_sample=True if float(temp)>0 else False,
eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id
)
import threading
t = threading.Thread(target=llm.generate, kwargs=gen); t.start()
buf=""
for tok in streamer:
buf += tok
yield buf
def warmup():
try:
_ = list(stream_answer("π 的前三位有效數字?", mx=32))[-1]
print("[warmup] done")
except Exception as e:
print("[warmup] skip:", e)
with gr.Blocks(title=TITLE, theme="soft") as demo:
gr.Markdown(f"## {TITLE}\n模型:`{MODEL_ID}`|建議:短題短答、先步驟後答案(已流式)")
q = gr.Textbox(label="數學題 / 規則題(可貼LaTeX)", placeholder="例:f(x)=(x^2+1)e^x 求 f'(x)", lines=3)
mx = gr.Slider(64, 512, value=192, step=32, label="max_new_tokens")
temp = gr.Slider(0.0, 0.8, value=0.1, step=0.05, label="temperature")
top = gr.Slider(0.6, 1.0, value=0.9, step=0.01, label="top_p")
go = gr.Button("計算 🚀", variant="primary")
out= gr.Textbox(label="逐步輸出", lines=14)
clr= gr.Button("清除")
go.click(stream_answer, inputs=[q, mx, temp, top], outputs=out)
clr.click(lambda:"", outputs=out)
demo.queue()
warmup()
if __name__ == "__main__":
demo.launch(share=False, server_name="0.0.0.0", server_port=7860, show_error=True)