|
import json |
|
from pathlib import Path |
|
from typing import Optional |
|
import torch |
|
import torch.backends.cuda |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
|
|
from transformers.activations import QuickGELUActivation |
|
import math |
|
from einops.layers.torch import Rearrange |
|
import einops |
|
|
|
|
|
MODEL_CONFIGS = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'CustomTest6': { |
|
'class': 'CLIPLikeModel', |
|
'embedding_dim': 768, |
|
'num_attention_heads': 12, |
|
'activation_cls': nn.GELU, |
|
'num_channels': 3, |
|
'patch_size': 16, |
|
'use_palm_alt': True, |
|
'num_layers': 12, |
|
'use_mha_alt': False, |
|
'good_dropout': False, |
|
}, |
|
|
|
|
|
'CustomTest18': { |
|
'class': 'CLIPLikeModel', |
|
'embedding_dim': 768, |
|
'num_attention_heads': 12, |
|
'activation_cls': nn.GELU, |
|
'num_channels': 3, |
|
'patch_size': 16, |
|
'use_palm_alt': True, |
|
'num_layers': 12, |
|
'use_mha_alt': False, |
|
'good_dropout': False, |
|
'use_gap_head': True, |
|
'sine_positional_embeddings': True, |
|
}, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'SWModel1': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': False}, |
|
|
|
|
|
'SWModel2': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
|
|
|
|
'SWModel3': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
|
|
|
|
'SWModel4': {'class': 'ViT', 'num_blocks': 48, 'patch_size': 14, 'd_model': 1664, 'mlp_dim': 1664*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
|
|
|
|
'SWModel5': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
|
|
'SWModel6': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
|
|
'SWModel7': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
'SWModel8': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
'SWModel9': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
'SWModel10': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
'SWModel11': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0, 'use_sine': True}, |
|
|
|
|
|
'SWModel12': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'head_mean_after': True}, |
|
|
|
|
|
'SWModel13': {'class': 'ViT', 'num_blocks': 6, 'patch_size': 16, 'd_model': 1536, 'mlp_dim': 1536*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, |
|
|
|
|
|
'SWModel14': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
'SWModel15': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-5, 'use_sine': True}, |
|
'SWModel16': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
'SWModel16f': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
'SWModel22': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.20, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
'SWModel25': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 16, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True, 'cnn_stem': 'conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=1024;ln;relu;conv:c=1024,s=1,k=1,p=0'}, |
|
|
|
|
|
'SWModel18': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=256;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1'}, |
|
'SWModel19': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=128,s=1;bn;relu;conv:c=256;bn;relu;conv:c=256,s=1;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1,p=0'}, |
|
'SWModel20': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'}, |
|
'SWModel21': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;gelu;conv:c=128;ln;gelu;conv:c=256;ln;gelu;conv:c=512;ln;gelu;conv:c=768,s=1,k=1,p=0'}, |
|
'SWModel23': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'}, |
|
'SWModel24': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'}, |
|
|
|
|
|
'SWModel17': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
'SWModel26': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True}, |
|
} |
|
|
|
|
|
class VisionModel(nn.Module): |
|
image_size: int |
|
n_tags: int |
|
|
|
def __init__(self, image_size: int, n_tags: int): |
|
super().__init__() |
|
|
|
self.image_size = image_size |
|
self.n_tags = n_tags |
|
|
|
@staticmethod |
|
def load_model(path: Path | str, device: str | None = None) -> 'VisionModel': |
|
""" |
|
Load a model from a directory. |
|
:param path: The directory containing the model. |
|
:return: The model, the image size, and the number of tags. |
|
""" |
|
with open(Path(path) / 'config.json', 'r') as f: |
|
config = json.load(f) |
|
|
|
if (Path(path) / 'model.safetensors').exists(): |
|
from safetensors.torch import load_file |
|
resume = load_file(Path(path) / 'model.safetensors', device='cpu') |
|
else: |
|
resume = torch.load(Path(path) / 'model.pt', map_location=torch.device('cpu')) |
|
|
|
model_classes = VisionModel.__subclasses__() |
|
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class']) |
|
|
|
model = model_cls(**{k: v for k, v in config.items() if k != 'class'}) |
|
model.load(resume['model']) |
|
if device is not None: |
|
model = model.to(device) |
|
|
|
return model |
|
|
|
@staticmethod |
|
def from_config(config: dict) -> 'VisionModel': |
|
model_classes = VisionModel.__subclasses__() |
|
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class']) |
|
return model_cls(**{k: v for k, v in config.items() if k != 'class'}) |
|
|
|
def get_optimized_parameters(self, lr: float): |
|
raise NotImplementedError |
|
|
|
def save(self): |
|
raise NotImplementedError |
|
|
|
def load(self, state_dict): |
|
raise NotImplementedError |
|
|
|
|
|
def basic_calculate_loss(preds: dict[str, torch.Tensor], batch: dict, pos_weight: torch.Tensor | None, loss_type: str): |
|
def asl_helper(preds, target): |
|
p = F.softmax(preds, dim=1) |
|
xs_pos = p.clamp(min=1e-6) |
|
xs_neg = (1 - p).clamp(min=1e-6) |
|
|
|
los_pos = torch.log(torch.gather(xs_pos, 1, target.unsqueeze(1))).sum() |
|
los_neg = torch.log(xs_neg) |
|
los_neg = los_neg.sum() - torch.gather(los_neg, 1, target.unsqueeze(1)).sum() |
|
loss = los_pos + los_neg |
|
|
|
return -loss |
|
|
|
if loss_type == "ce": |
|
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags']) |
|
elif loss_type == "weighted": |
|
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) |
|
elif loss_type == "focal": |
|
gamma = 2 |
|
p = torch.sigmoid(preds['tags']) |
|
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none') |
|
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags']) |
|
loss = ce_loss * ((1 - p_t) ** gamma) |
|
loss = loss.mean() |
|
elif loss_type == "focal2": |
|
gamma = 2 |
|
p = torch.sigmoid(preds['tags']) |
|
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none') |
|
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags']) |
|
loss = ce_loss * ((1 - p_t) ** gamma) * 256 |
|
loss = loss.mean() |
|
elif loss_type == "asl": |
|
p = torch.sigmoid(preds['tags']) |
|
xs_pos = p |
|
xs_neg = 1 - p |
|
|
|
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) |
|
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) |
|
loss = los_pos + los_neg |
|
loss = -loss.sum() |
|
|
|
|
|
loss = loss + asl_helper(preds['rating'], batch['rating']) |
|
|
|
|
|
loss = loss + asl_helper(preds['score'], batch['score']) |
|
elif loss_type == "asl2": |
|
p = torch.sigmoid(preds['tags']) |
|
xs_pos = p |
|
xs_neg = 1 - p |
|
|
|
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) |
|
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) |
|
loss = -los_pos - los_neg |
|
loss = loss.sum() |
|
elif loss_type == "asl3": |
|
p = torch.sigmoid(preds['tags']) |
|
xs_pos = p |
|
xs_neg = 1 - p |
|
|
|
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) |
|
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) |
|
loss = -los_pos - los_neg |
|
loss = loss.mean() |
|
elif loss_type == "asl4": |
|
p = torch.sigmoid(preds['tags']) |
|
xs_pos = p |
|
xs_neg = 1 - p |
|
|
|
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) |
|
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) |
|
loss = -los_pos - los_neg |
|
loss = loss.mean() * 128 |
|
elif loss_type == "asl5": |
|
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 128 |
|
elif loss_type == "asl6": |
|
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 256 |
|
elif loss_type == "asl7": |
|
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 2 |
|
else: |
|
raise ValueError(f"Invalid loss type: {loss_type}") |
|
|
|
return loss |
|
|
|
|
|
class CLIPMlp(nn.Module): |
|
def __init__(self, hidden_size: int, intermediate_size: int, activation_cls): |
|
super().__init__() |
|
self.activation_fn = activation_cls() |
|
self.fc1 = nn.Linear(hidden_size, intermediate_size) |
|
self.fc2 = nn.Linear(intermediate_size, hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class FastCLIPAttention2(nn.Module): |
|
"""Fast Attention module for CLIP-like. This is NOT a drop-in replacement for CLIPAttention, since it adds additional flexibility. Mainly uses xformers.""" |
|
def __init__(self, hidden_size: int, out_dim: int, num_attention_heads: int, out_seq_len: Optional[int] = None, norm_qk: bool = False): |
|
super().__init__() |
|
self.out_seq_len = out_seq_len |
|
self.embed_dim = hidden_size |
|
self.out_dim = out_dim |
|
self.norm_qk = norm_qk |
|
self.num_heads = num_attention_heads |
|
self.head_dim = hidden_size // num_attention_heads |
|
assert self.head_dim * num_attention_heads == self.embed_dim, "embed_dim must be divisible by num_attention_heads" |
|
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.kv_proj = nn.Linear(self.embed_dim, self.embed_dim * 2) |
|
self.out_proj = nn.Linear(self.embed_dim, self.out_dim) |
|
|
|
if self.norm_qk: |
|
self.query_norm = nn.LayerNorm(self.embed_dim) |
|
self.key_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
|
|
|
|
|
|
def forward(self, query_states: torch.Tensor, kv_states: torch.Tensor) -> torch.Tensor: |
|
bsz, src_len, embed_dim = kv_states.size() |
|
if self.out_seq_len is not None: |
|
tgt_len = self.out_seq_len |
|
else: |
|
tgt_len = src_len |
|
|
|
kv_states = self.kv_proj(kv_states) |
|
q_states = self.q_proj(query_states[:, :tgt_len]) |
|
|
|
|
|
if self.norm_qk: |
|
q_states = self.query_norm(q_states).type(q_states.dtype) |
|
k_states = self.key_norm(kv_states[:, :, :embed_dim]).type(kv_states.dtype) |
|
v_states = kv_states[:, :, embed_dim:] |
|
else: |
|
k_states = kv_states[:, :, :embed_dim] |
|
v_states = kv_states[:, :, embed_dim:] |
|
|
|
q_states = q_states.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
k_states = k_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
v_states = v_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
with torch.backends.cuda.sdp_kernel(enable_math=False): |
|
x = F.scaled_dot_product_attention(q_states, k_states, v_states) |
|
x = x.transpose(1, 2).contiguous().view(bsz, tgt_len, embed_dim) |
|
|
|
|
|
x = self.out_proj(x) |
|
|
|
return x |
|
|
|
|
|
class SkipInit(nn.Module): |
|
def __init__(self, hidden_size: int, channel_wise: bool, init_scale: float): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.channel_wise = channel_wise |
|
self.init_scale = init_scale |
|
|
|
if self.channel_wise: |
|
self.scale = nn.Parameter(torch.ones(hidden_size) * init_scale) |
|
else: |
|
self.scale = nn.Parameter(torch.tensor(init_scale)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * self.scale |
|
|
|
|
|
class FastCLIPEncoderLayer(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_attention_heads: int, |
|
out_seq_len: Optional[int], |
|
activation_cls = QuickGELUActivation, |
|
use_palm_alt: bool = False, |
|
norm_qk: bool = False, |
|
skip_init: Optional[float] = None, |
|
stochastic_depth: Optional[float] = None, |
|
): |
|
super().__init__() |
|
|
|
self.use_palm_alt = use_palm_alt |
|
self.stochastic_depth = stochastic_depth |
|
|
|
self.self_attn = FastCLIPAttention2( |
|
hidden_size=hidden_size, |
|
out_dim=hidden_size, |
|
num_attention_heads=num_attention_heads, |
|
out_seq_len=out_seq_len, |
|
norm_qk=norm_qk, |
|
) |
|
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls) |
|
self.layer_norm1 = nn.LayerNorm(hidden_size) |
|
if not use_palm_alt: |
|
self.layer_norm2 = nn.LayerNorm(hidden_size) |
|
|
|
if skip_init is not None: |
|
self.attn_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init) |
|
self.mlp_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init) |
|
else: |
|
self.attn_skip_init = nn.Identity() |
|
self.mlp_skip_init = nn.Identity() |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
residual = hidden_states |
|
hidden_states = self.layer_norm1(hidden_states) |
|
|
|
if not self.use_palm_alt: |
|
hidden_states = self.self_attn(query_states=hidden_states, kv_states=hidden_states) |
|
hidden_states = self.attn_skip_init(hidden_states) |
|
hidden_states = hidden_states + residual[:, :hidden_states.size(1)] |
|
|
|
residual = hidden_states |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = self.mlp_skip_init(hidden_states) |
|
hidden_states = hidden_states + residual |
|
else: |
|
|
|
|
|
|
|
attn = self.self_attn(query_states=hidden_states, kv_states=hidden_states) |
|
attn = self.attn_skip_init(attn) |
|
mlp = self.mlp(hidden_states[:, :attn.size(1)]) |
|
mlp = self.mlp_skip_init(mlp) |
|
|
|
if self.stochastic_depth is not None: |
|
attn = torchvision.ops.stochastic_depth(attn, self.stochastic_depth, mode='row', training=self.training) |
|
mlp = torchvision.ops.stochastic_depth(mlp, self.stochastic_depth, mode='row', training=self.training) |
|
|
|
hidden_states = residual[:, :attn.size(1)] + attn + mlp |
|
|
|
return hidden_states |
|
|
|
|
|
def sinusoidal_position_embedding(width: int, height: int, depth: int, dtype, device, temperature = 10000): |
|
""" |
|
Sinusoidal position embedding. Returns a flat tensor of shape (h * w, d). |
|
""" |
|
assert depth % 4 == 0, "Embedding dimension must be divisible by 4." |
|
|
|
y, x = torch.meshgrid(torch.arange(height, device=device), torch.arange(width, device=device), indexing="ij") |
|
omega = torch.arange(depth // 4, device=device) / (depth // 4 - 1) |
|
omega = 1. / (temperature ** omega) |
|
|
|
y = y.flatten()[:, None] * omega[None, :] |
|
x = x.flatten()[:, None] * omega[None, :] |
|
embedding = torch.cat([x.sin(), x.cos(), y.sin(), y.cos()], dim=1) |
|
|
|
return embedding.type(dtype) |
|
|
|
|
|
class CLIPEmbeddingLayer(nn.Module): |
|
def __init__(self, hidden_size: int, num_channels: int, image_size: int, patch_size: int, patch_dropout: float = 0.0, good_dropout: bool = False, dpn: bool = False, sine_positional_embeddings: bool = False): |
|
super().__init__() |
|
|
|
assert image_size % patch_size == 0, "Image dimensions must be divisible by the patch size." |
|
|
|
seq_len = (image_size // patch_size) ** 2 |
|
self.patch_dropout = patch_dropout |
|
self.hidden_size = hidden_size |
|
self.good_dropout = good_dropout |
|
self.dpn = dpn |
|
self.sine_positional_embeddings = sine_positional_embeddings |
|
self.patch_size = patch_size |
|
|
|
self.patch_embeddings = nn.Conv2d( |
|
in_channels=num_channels, |
|
out_channels=hidden_size, |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=False, |
|
) |
|
if not self.sine_positional_embeddings: |
|
self.positional_embeddings = nn.Embedding(seq_len, hidden_size) |
|
self.register_buffer("position_ids", torch.arange(seq_len)) |
|
|
|
if self.dpn: |
|
self.to_patch_embeddings = nn.Sequential( |
|
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size), |
|
nn.LayerNorm(3 * patch_size * patch_size), |
|
nn.Linear(3 * patch_size * patch_size, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
) |
|
else: |
|
self.to_patch_embeddings = nn.Conv2d( |
|
in_channels=num_channels, |
|
out_channels=hidden_size, |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=False, |
|
) |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
B, C, H, W = pixel_values.shape |
|
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})." |
|
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})." |
|
|
|
if self.dpn: |
|
patches = self.to_patch_embeddings(pixel_values) |
|
else: |
|
patches = self.to_patch_embeddings(pixel_values) |
|
patches = patches.flatten(2).transpose(1, 2) |
|
|
|
seq_len = patches.shape[1] |
|
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len)) |
|
|
|
if self.sine_positional_embeddings: |
|
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.hidden_size, pixel_values.dtype, pixel_values.device) |
|
else: |
|
position_embeddings = self.positional_embeddings(self.position_ids) |
|
|
|
if patch_dropout == seq_len or not self.training: |
|
embeddings = patches + position_embeddings |
|
elif self.good_dropout: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
patch_mask = torch.rand(B, seq_len, device=patches.device) |
|
|
|
patch_mask = torch.argsort(patch_mask, dim=1) |
|
|
|
patch_mask = patch_mask[:, :patch_dropout] |
|
|
|
embeddings = patches.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, self.hidden_size)) + position_embeddings[patch_mask] |
|
else: |
|
|
|
indices = torch.randperm(seq_len, device=pixel_values.device)[:patch_dropout] |
|
embeddings = patches[:, indices, :] + position_embeddings[indices.expand(1, -1)] |
|
|
|
return embeddings |
|
|
|
|
|
class MHAPoolingHead(nn.Module): |
|
def __init__(self, hidden_size: int, num_attention_heads: int, activation_cls, out_dim: int, alt_style: bool, norm_qk: bool): |
|
super().__init__() |
|
|
|
self.out_dim = out_dim if not alt_style else hidden_size |
|
|
|
self.probe = nn.Parameter(torch.randn(hidden_size)) |
|
|
|
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls) |
|
self.layer_norm = nn.LayerNorm(hidden_size) |
|
self.pooling_head = nn.Linear(hidden_size, 1) |
|
|
|
self.self_attn = FastCLIPAttention2( |
|
hidden_size=hidden_size, |
|
out_dim=self.out_dim, |
|
num_attention_heads=num_attention_heads, |
|
out_seq_len=1, |
|
norm_qk=norm_qk, |
|
) |
|
self.mlp = CLIPMlp(self.out_dim, 4 * self.out_dim, activation_cls) |
|
self.layer_norm1 = nn.LayerNorm(hidden_size) |
|
self.layer_norm2 = nn.LayerNorm(self.out_dim) |
|
|
|
if alt_style: |
|
self.final_proj = nn.Linear(hidden_size, out_dim) |
|
else: |
|
self.final_proj = nn.Identity() |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
hidden_states = self.layer_norm1(hidden_states) |
|
query_states = self.probe.unsqueeze(0).unsqueeze(0).expand(hidden_states.size(0), 1, -1) |
|
|
|
hidden_states = self.self_attn(query_states=query_states, kv_states=hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = hidden_states + residual |
|
hidden_states = self.final_proj(hidden_states) |
|
|
|
return hidden_states.squeeze(1) |
|
|
|
|
|
class GAPHead(nn.Module): |
|
def __init__(self, hidden_size: int, out_dim: int): |
|
super().__init__() |
|
|
|
self.norm = nn.LayerNorm(hidden_size) |
|
self.proj = nn.Linear(hidden_size, out_dim) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x.mean(dim=1) |
|
x = self.norm(x) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class CLIPLikeModel(VisionModel): |
|
def __init__( |
|
self, |
|
n_tags: int, |
|
embedding_dim: int, |
|
num_attention_heads: int, |
|
activation_cls, |
|
num_channels: int, |
|
image_size: int, |
|
patch_size: int, |
|
patch_dropout: float, |
|
use_palm_alt: bool, |
|
num_layers: int, |
|
use_mha_alt: bool, |
|
loss_type: str, |
|
good_dropout: bool=False, |
|
dpn: bool=False, |
|
sine_positional_embeddings: bool=False, |
|
norm_qk: bool = False, |
|
no_wd_bias: bool = False, |
|
use_gap_head: bool = False, |
|
skip_init: Optional[float] = None, |
|
stochastic_depth: Optional[float] = None, |
|
): |
|
super().__init__(image_size, n_tags) |
|
|
|
out_dim = n_tags |
|
self.n_tags = n_tags |
|
self.loss_type = loss_type |
|
self.no_wd_bias = no_wd_bias |
|
|
|
stochastic_depth_space = torch.linspace(0, stochastic_depth, num_layers) if stochastic_depth is not None else None |
|
|
|
self.embedding_layer = CLIPEmbeddingLayer(embedding_dim, num_channels, image_size, patch_size, patch_dropout, good_dropout, dpn, sine_positional_embeddings) |
|
self.pre_layer_norm = nn.LayerNorm(embedding_dim) |
|
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer( |
|
hidden_size=embedding_dim, |
|
num_attention_heads=num_attention_heads, |
|
out_seq_len=None, |
|
activation_cls=activation_cls, |
|
use_palm_alt=use_palm_alt, |
|
norm_qk=norm_qk, |
|
skip_init=skip_init, |
|
stochastic_depth=stochastic_depth_space[i].item() if stochastic_depth_space is not None else None, |
|
) for i in range(num_layers)]) |
|
|
|
if use_gap_head: |
|
self.pooling_head = GAPHead(embedding_dim, out_dim) |
|
else: |
|
self.pooling_head = MHAPoolingHead(embedding_dim, num_attention_heads, activation_cls, out_dim, use_mha_alt, norm_qk=norm_qk) |
|
|
|
def forward(self, batch): |
|
hidden_states = self.embedding_layer(batch['image']) |
|
hidden_states = self.pre_layer_norm(hidden_states) |
|
|
|
for layer in self.encoder_layers: |
|
hidden_states = layer(hidden_states) |
|
|
|
preds = self.pooling_head(hidden_states) |
|
|
|
result = { |
|
'tags': preds, |
|
} |
|
|
|
return result |
|
|
|
def calculate_loss(self, preds, batch, pos_weight): |
|
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) |
|
|
|
def get_optimized_parameters(self, lr: float): |
|
if self.no_wd_bias: |
|
return self.get_optimized_parameters_no_wd_bias() |
|
else: |
|
return self.parameters() |
|
|
|
def get_optimized_parameters_no_wd_bias(self): |
|
decay = [] |
|
no_decay = [] |
|
|
|
for name, param in self.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
|
|
if len(param.shape) == 1 or name.endswith(".bias"): |
|
no_decay.append(param) |
|
print(f'No decay: {name}') |
|
else: |
|
decay.append(param) |
|
|
|
return [ |
|
{'params': decay}, |
|
{'params': no_decay, 'weight_decay': 0.}, |
|
] |
|
|
|
def save(self): |
|
return self.state_dict() |
|
|
|
def load(self, state_dict): |
|
self.load_state_dict(state_dict) |
|
|
|
|
|
class MaskedAutoEncoderViT(nn.Module): |
|
def __init__( |
|
self, |
|
n_tags: int, |
|
|
|
embedding_dim: int, |
|
num_attention_heads: int, |
|
activation_cls, |
|
num_channels: int, |
|
image_size: int, |
|
patch_size: int, |
|
num_layers: int, |
|
loss_type: str, |
|
sine_positional_embeddings: bool=False, |
|
|
|
decoder_embedding_dim: int = 512, |
|
decoder_num_attention_heads: int = 8, |
|
decoder_num_layers: int = 6, |
|
decoder_force_projection: bool = False, |
|
|
|
masking_ratio: float = 0.75, |
|
mae_loss_weight: float = 1.0, |
|
mae_normalize_targets: bool = False, |
|
mae_post_norm: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.n_tags = n_tags |
|
self.seq_len = (image_size // patch_size) ** 2 |
|
self.embedding_dim = embedding_dim |
|
self.decoder_embedding_dim = decoder_embedding_dim |
|
self.sine_positional_embeddings = sine_positional_embeddings |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.masking_ratio = masking_ratio |
|
self.loss_type = loss_type |
|
self.mae_loss_weight = mae_loss_weight |
|
self.mae_normalize_targets = mae_normalize_targets |
|
|
|
if not self.sine_positional_embeddings: |
|
self.positional_embeddings = nn.Embedding(self.seq_len, embedding_dim) |
|
self.decoder_positional_embeddings = nn.Embedding(self.seq_len, decoder_embedding_dim) |
|
self.register_buffer("position_ids", torch.arange(self.seq_len)) |
|
|
|
self.to_patches = Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size) |
|
self.patch_embedder = nn.Linear(num_channels * patch_size * patch_size, embedding_dim) |
|
|
|
|
|
self.pre_layer_norm = nn.LayerNorm(embedding_dim) |
|
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer( |
|
hidden_size=embedding_dim, |
|
num_attention_heads=num_attention_heads, |
|
out_seq_len=None, |
|
activation_cls=activation_cls, |
|
use_palm_alt=True, |
|
norm_qk=False, |
|
skip_init=None, |
|
) for _ in range(num_layers)]) |
|
|
|
|
|
self.pooling_head = GAPHead(embedding_dim, n_tags) |
|
|
|
|
|
if embedding_dim != decoder_embedding_dim or decoder_force_projection: |
|
self.encoder_to_decoder_proj = nn.Linear(embedding_dim, decoder_embedding_dim) |
|
else: |
|
self.encoder_to_decoder_proj = nn.Identity() |
|
self.decoder_pre_layer_norm = nn.LayerNorm(decoder_embedding_dim) |
|
self.decoder_layers = nn.ModuleList([FastCLIPEncoderLayer( |
|
hidden_size=decoder_embedding_dim, |
|
num_attention_heads=decoder_num_attention_heads, |
|
out_seq_len=None, |
|
activation_cls=activation_cls, |
|
use_palm_alt=True, |
|
norm_qk=False, |
|
skip_init=None, |
|
) for _ in range(decoder_num_layers)]) |
|
|
|
if mae_post_norm: |
|
self.decoder_to_pixel_values = nn.Sequential( |
|
nn.LayerNorm(decoder_embedding_dim), |
|
nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size) |
|
) |
|
else: |
|
self.decoder_to_pixel_values = nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size) |
|
self.mask_token = nn.Parameter(torch.zeros(decoder_embedding_dim)) |
|
torch.nn.init.normal_(self.mask_token, std=0.02) |
|
|
|
def forward(self, batch): |
|
pixel_values = batch['image'] |
|
device = pixel_values.device |
|
B, C, H, W = pixel_values.shape |
|
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})." |
|
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})." |
|
|
|
|
|
patches = self.to_patches(pixel_values) |
|
seq_len = patches.shape[1] |
|
num_masked = int(self.masking_ratio * seq_len) |
|
|
|
|
|
|
|
patch_mask = torch.rand(B, seq_len, device=device) |
|
patch_mask = torch.argsort(patch_mask, dim=1) |
|
masked_indices, unmasked_indices = patch_mask[:, :num_masked], patch_mask[:, num_masked:] |
|
batch_range = torch.arange(B, device=device)[:, None] |
|
|
|
|
|
unmasked_patches = patches[batch_range, unmasked_indices] |
|
masked_patches = patches[batch_range, masked_indices] |
|
|
|
|
|
tokens = self.patch_embedder(unmasked_patches) |
|
|
|
if self.sine_positional_embeddings: |
|
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.embedding_dim, pixel_values.dtype, device) |
|
decoder_position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.decoder_embedding_dim, pixel_values.dtype, device) |
|
else: |
|
position_embeddings = self.positional_embeddings(self.position_ids) |
|
decoder_position_embeddings = self.decoder_positional_embeddings(self.position_ids) |
|
|
|
|
|
tokens = tokens + position_embeddings[unmasked_indices] |
|
|
|
|
|
encoded_tokens = self.pre_layer_norm(tokens) |
|
|
|
for layer in self.encoder_layers: |
|
encoded_tokens = layer(encoded_tokens) |
|
|
|
|
|
if self.training: |
|
preds = self.pooling_head(encoded_tokens) |
|
else: |
|
|
|
|
|
tokens = self.patch_embedder(patches) |
|
tokens = tokens + position_embeddings |
|
tokens = self.pre_layer_norm(tokens) |
|
for layer in self.encoder_layers: |
|
tokens = layer(tokens) |
|
preds = self.pooling_head(tokens) |
|
|
|
|
|
decoder_tokens = self.encoder_to_decoder_proj(encoded_tokens) |
|
decoder_tokens = decoder_tokens + decoder_position_embeddings[unmasked_indices] |
|
|
|
|
|
mask_tokens = einops.repeat(self.mask_token, 'd -> b n d', b = B, n = num_masked) |
|
mask_tokens = mask_tokens + decoder_position_embeddings[masked_indices] |
|
decoder_tokens = torch.cat([decoder_tokens, mask_tokens], dim=1) |
|
|
|
|
|
decoded_tokens = self.decoder_pre_layer_norm(decoder_tokens) |
|
|
|
for layer in self.decoder_layers: |
|
decoded_tokens = layer(decoded_tokens) |
|
|
|
|
|
|
|
decoded_tokens = decoded_tokens[:, -num_masked:] |
|
pred_pixel_values = self.decoder_to_pixel_values(decoded_tokens) |
|
|
|
|
|
if self.mae_normalize_targets: |
|
|
|
means = masked_patches.mean(dim=-1, keepdim=True) |
|
vars = masked_patches.var(dim=-1, keepdim=True) |
|
target = (masked_patches - means) / (vars + 1e-6)**0.5 |
|
mae_loss = F.mse_loss(pred_pixel_values, target) |
|
else: |
|
mae_loss = F.mse_loss(pred_pixel_values, masked_patches) |
|
mae_loss = mae_loss * self.mae_loss_weight |
|
|
|
return { |
|
'tags': preds, |
|
'mae_loss': mae_loss, |
|
} |
|
|
|
def calculate_loss(self, preds, batch, pos_weight): |
|
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) + preds['mae_loss'] |
|
|
|
def get_optimized_parameters(self, lr: float): |
|
return self.parameters() |
|
|
|
def save(self): |
|
return self.state_dict() |
|
|
|
def load(self, state_dict): |
|
self.load_state_dict(state_dict) |
|
|
|
|
|
class StochDepth(nn.Module): |
|
def __init__(self, drop_rate: float, scale_by_keep: bool = False): |
|
super().__init__() |
|
self.drop_rate = drop_rate |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x): |
|
if not self.training: |
|
return x |
|
|
|
batch_size = x.shape[0] |
|
r = torch.rand((batch_size, 1, 1), device=x.device) |
|
keep_prob = 1 - self.drop_rate |
|
binary_tensor = torch.floor(keep_prob + r) |
|
if self.scale_by_keep: |
|
x = x / keep_prob |
|
|
|
return x * binary_tensor |
|
|
|
|
|
class SkipInitChannelwise(nn.Module): |
|
def __init__(self, channels, init_val=1e-6): |
|
super().__init__() |
|
self.channels = channels |
|
self.init_val = init_val |
|
self.skip = nn.Parameter(torch.ones(channels) * init_val) |
|
|
|
def forward(self, x): |
|
return x * self.skip |
|
|
|
|
|
class PosEmbedding(nn.Module): |
|
def __init__(self, d_model: int, max_len: int, use_sine: bool, patch_size: int): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.max_len = max_len |
|
self.use_sine = use_sine |
|
self.patch_size = patch_size |
|
|
|
if not self.use_sine: |
|
self.embedding = nn.Embedding(max_len, d_model) |
|
nn.init.trunc_normal_(self.embedding.weight, std=0.02) |
|
self.register_buffer("position_ids", torch.arange(max_len)) |
|
|
|
def forward(self, x, width: int, height: int): |
|
if self.use_sine: |
|
position_embeddings = sinusoidal_position_embedding(width // self.patch_size, height // self.patch_size, self.d_model, x.dtype, x.device) |
|
else: |
|
position_embeddings = self.embedding(self.position_ids) |
|
|
|
return x + position_embeddings |
|
|
|
|
|
class MLPBlock(nn.Module): |
|
def __init__(self, d_model: int, d_ff: int, stochdepth_rate: float): |
|
super().__init__() |
|
self.linear1 = nn.Linear(d_model, d_ff) |
|
self.linear2 = nn.Linear(d_ff, d_model) |
|
self.activation = nn.GELU() |
|
if stochdepth_rate > 0: |
|
self.stochdepth = StochDepth(stochdepth_rate, scale_by_keep=True) |
|
else: |
|
self.stochdepth = None |
|
|
|
def forward(self, x): |
|
x = self.linear1(x) |
|
x = self.activation(x) |
|
if self.stochdepth is not None: |
|
x = self.stochdepth(x) |
|
x = self.linear2(x) |
|
return x |
|
|
|
|
|
class ViTBlock(nn.Module): |
|
def __init__(self, num_heads: int, d_model: int, d_ff: int, layerscale_init: float, stochdepth_rate: float): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.d_model = d_model |
|
|
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.qkv_proj = nn.Linear(d_model, d_model * 3) |
|
self.out_proj = nn.Linear(d_model, d_model) |
|
self.skip_init1 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init) |
|
self.stochdepth1 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None |
|
|
|
|
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.mlp = MLPBlock(d_model, d_ff, stochdepth_rate) |
|
self.skip_init2 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init) |
|
self.stochdepth2 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None |
|
|
|
def forward(self, x): |
|
bsz, src_len, embed_dim = x.shape |
|
|
|
out = x |
|
out = self.norm1(out) |
|
|
|
|
|
qkv_states = self.qkv_proj(out).split(self.d_model, dim=-1) |
|
q_states = qkv_states[0].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) |
|
k_states = qkv_states[1].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) |
|
v_states = qkv_states[2].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) |
|
|
|
with torch.backends.cuda.sdp_kernel(enable_math=False): |
|
out = F.scaled_dot_product_attention(q_states, k_states, v_states) |
|
out = out.transpose(1, 2).contiguous().view(bsz, src_len, embed_dim) |
|
|
|
out = self.out_proj(out) |
|
|
|
out = self.skip_init1(out) |
|
if self.stochdepth1 is not None: |
|
out = self.stochdepth1(out) |
|
x = out + x |
|
|
|
out = self.norm2(x) |
|
out = self.mlp(out) |
|
out = self.skip_init2(out) |
|
if self.stochdepth2 is not None: |
|
out = self.stochdepth2(out) |
|
|
|
out = out + x |
|
|
|
return out |
|
|
|
|
|
def CaiT_LayerScale_init(network_depth): |
|
if network_depth <= 18: |
|
return 1e-1 |
|
elif network_depth <= 24: |
|
return 1e-5 |
|
else: |
|
return 1e-6 |
|
|
|
|
|
class CNNLayerNorm(nn.Module): |
|
def __init__(self, d_model: int): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(d_model) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x.transpose(1, 3) |
|
x = self.norm(x) |
|
x = x.transpose(1, 3) |
|
return x |
|
|
|
|
|
class CNNStem(nn.Module): |
|
def __init__(self, config: str): |
|
super().__init__() |
|
self.config = config |
|
|
|
layers = [] |
|
channels = 3 |
|
|
|
for line in config.split(";"): |
|
ty, line = line.split(":") if ":" in line else (line, "") |
|
options = line.split(",") |
|
options = [o.split("=") for o in options] if line else [] |
|
options = {k: v for k, v in options} |
|
|
|
if ty == 'conv': |
|
layers.append(nn.Conv2d( |
|
in_channels=channels, |
|
out_channels=int(options['c']), |
|
kernel_size=int(options['k'] if 'k' in options else 3), |
|
stride=int(options['s'] if 's' in options else 2), |
|
bias=True, |
|
padding=int(options['p'] if 'p' in options else 1), |
|
)) |
|
channels = int(options['c']) |
|
elif ty == 'bn': |
|
layers.append(nn.BatchNorm2d(channels)) |
|
elif ty == 'ln': |
|
layers.append(CNNLayerNorm(channels)) |
|
elif ty == 'relu': |
|
layers.append(nn.ReLU()) |
|
elif ty == 'gelu': |
|
layers.append(nn.GELU()) |
|
|
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.conv(x) |
|
|
|
|
|
class ViT(VisionModel): |
|
def __init__(self, |
|
n_tags: int, |
|
image_size: int, |
|
num_blocks: int, |
|
patch_size: int, |
|
d_model: int, |
|
mlp_dim: int, |
|
num_heads: int, |
|
stochdepth_rate: float, |
|
use_sine: bool, |
|
loss_type: str, |
|
layerscale_init: Optional[float] = None, |
|
head_mean_after: bool = False, |
|
cnn_stem: str | None = None, |
|
patch_dropout: float = 0.0, |
|
): |
|
super().__init__(image_size, n_tags) |
|
|
|
|
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
out_dim = n_tags |
|
self.n_tags = n_tags |
|
self.loss_type = loss_type |
|
self.patch_size = patch_size |
|
self.head_mean_after = head_mean_after |
|
self.patch_dropout = patch_dropout |
|
|
|
layerscale_init = CaiT_LayerScale_init(num_blocks) if layerscale_init is None else layerscale_init |
|
self.patch_embeddings = nn.Conv2d( |
|
in_channels=3, |
|
out_channels=d_model, |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=True, |
|
) if cnn_stem is None else CNNStem(cnn_stem) |
|
self.pos_embedding = PosEmbedding(d_model, (image_size // patch_size) ** 2, use_sine=use_sine, patch_size=patch_size) |
|
|
|
self.blocks = nn.ModuleList([ |
|
ViTBlock(num_heads, d_model, mlp_dim, layerscale_init, stochdepth_rate) |
|
for _ in range(num_blocks) |
|
]) |
|
|
|
self.norm = nn.LayerNorm(d_model) |
|
self.head = nn.Linear(d_model, out_dim) |
|
|
|
def forward(self, batch, return_embeddings=False, return_loss: bool = False, pos_weight = None): |
|
B, C, H, W = batch['image'].shape |
|
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})." |
|
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})." |
|
|
|
x = self.patch_embeddings(batch['image']) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.pos_embedding(x, W, H) |
|
|
|
|
|
seq_len = x.shape[1] |
|
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len)) |
|
|
|
if patch_dropout != seq_len: |
|
|
|
patch_mask = torch.rand(B, seq_len, device=x.device) |
|
|
|
patch_mask = torch.argsort(patch_mask, dim=1) |
|
|
|
patch_mask = patch_mask[:, :patch_dropout] |
|
|
|
x = x.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, x.shape[-1])) |
|
|
|
|
|
|
|
|
|
|
|
for block in self.blocks: |
|
x = block(x) |
|
|
|
|
|
result = {} |
|
|
|
x = self.norm(x) |
|
if self.head_mean_after: |
|
x = self.head(x) |
|
x = x.mean(dim=1) |
|
else: |
|
x = x.mean(dim=1) |
|
if return_embeddings: |
|
result['embeddings'] = x |
|
x = self.head(x) |
|
|
|
result['tags'] = x |
|
|
|
if return_loss: |
|
result['loss'] = self.calculate_loss(result, batch, pos_weight) |
|
|
|
return result |
|
|
|
def calculate_loss(self, preds, batch, pos_weight): |
|
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) |
|
|
|
def get_optimized_parameters(self, lr: float): |
|
return self.parameters() |
|
|
|
def save(self): |
|
return self.state_dict() |
|
|
|
def load(self, state_dict): |
|
if 'head.weight' in state_dict and 'head.bias' in state_dict and state_dict['head.weight'].shape[0] == (self.n_tags + 9): |
|
|
|
state_dict['head.weight'] = state_dict['head.weight'][:self.n_tags] |
|
state_dict['head.bias'] = state_dict['head.bias'][:self.n_tags] |
|
|
|
self.load_state_dict(state_dict) |