Spaces:
Sleeping
Sleeping
acecalisto3
commited on
Commit
•
d8ebd13
1
Parent(s):
13a7a5d
Create supplemental.py
Browse files- supplemental.py +200 -0
supplemental.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from typing import List, Dict
|
4 |
+
|
5 |
+
class Agent:
|
6 |
+
def __init__(self, name, role, tools, knowledge_base=None):
|
7 |
+
self.name = name
|
8 |
+
self.role = role
|
9 |
+
self.tools = tools
|
10 |
+
self.knowledge_base = knowledge_base
|
11 |
+
self.memory = []
|
12 |
+
|
13 |
+
def act(self, prompt, context):
|
14 |
+
self.memory.append((prompt, context))
|
15 |
+
action = self.choose_action(prompt, context)
|
16 |
+
return action
|
17 |
+
|
18 |
+
def choose_action(self, prompt, context):
|
19 |
+
# Placeholder for action selection logic
|
20 |
+
return {"tool": "Code Generation", "arguments": {"language": "python", "code": "print('Hello, World!')"}}
|
21 |
+
|
22 |
+
def observe(self, observation):
|
23 |
+
pass
|
24 |
+
|
25 |
+
def learn(self, data):
|
26 |
+
pass
|
27 |
+
|
28 |
+
def __str__(self):
|
29 |
+
return f"""Agent: {self.name} (Role: {self.role})"""
|
30 |
+
|
31 |
+
class Tool:
|
32 |
+
def __init__(self, name, description):
|
33 |
+
self.name = name
|
34 |
+
self.description = description
|
35 |
+
|
36 |
+
def run(self, arguments):
|
37 |
+
return {"output": "Tool Output"}
|
38 |
+
|
39 |
+
class CodeGenerationTool(Tool):
|
40 |
+
def __init__(self):
|
41 |
+
super().__init__("Code Generation", "Generates code snippets in various languages.")
|
42 |
+
|
43 |
+
def run(self, arguments):
|
44 |
+
language = arguments.get("language", "python")
|
45 |
+
code = arguments.get("code", "print('Hello, World!')")
|
46 |
+
return {"output": f"""```{language}\n{code}\n```"""}
|
47 |
+
|
48 |
+
class DataRetrievalTool(Tool):
|
49 |
+
def __init__(self):
|
50 |
+
super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
|
51 |
+
|
52 |
+
def run(self, arguments):
|
53 |
+
source = arguments.get("source", "https://example.com/data")
|
54 |
+
return {"output": f"""Data from {source}"""}
|
55 |
+
|
56 |
+
class TextGenerationTool(Tool):
|
57 |
+
def __init__(self):
|
58 |
+
super().__init__("Text Generation", "Generates human-like text based on a given prompt.")
|
59 |
+
self.tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
|
60 |
+
self.model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")
|
61 |
+
|
62 |
+
def run(self, arguments):
|
63 |
+
prompt = arguments.get("prompt", "Write a short story about a cat.")
|
64 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
65 |
+
outputs = self.model.generate(**inputs, max_length=50)
|
66 |
+
return {"output": self.tokenizer.decode(outputs[0], skip_special_tokens=True)}
|
67 |
+
|
68 |
+
class CodeExecutionTool(Tool):
|
69 |
+
def __init__(self):
|
70 |
+
super().__init__("Code Execution", "Runs code snippets in various languages.")
|
71 |
+
|
72 |
+
def run(self, arguments):
|
73 |
+
code = arguments.get("code", "print('Hello, World!')")
|
74 |
+
return {"output": f"""Code executed: {code}"""}
|
75 |
+
|
76 |
+
class CodeDebuggingTool(Tool):
|
77 |
+
def __init__(self):
|
78 |
+
super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
|
79 |
+
|
80 |
+
def run(self, arguments):
|
81 |
+
code = arguments.get("code", "print('Hello, World!')")
|
82 |
+
return {"output": f"""Code debugged: {code}"""}
|
83 |
+
|
84 |
+
class CodeSummarizationTool(Tool):
|
85 |
+
def __init__(self):
|
86 |
+
super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
|
87 |
+
|
88 |
+
def run(self, arguments):
|
89 |
+
code = arguments.get("code", "print('Hello, World!')")
|
90 |
+
return {"output": f"""Code summary: {code}"""}
|
91 |
+
|
92 |
+
class CodeTranslationTool(Tool):
|
93 |
+
def __init__(self):
|
94 |
+
super().__init__("Code Translation", "Translates code snippets between different programming languages.")
|
95 |
+
|
96 |
+
def run(self, arguments):
|
97 |
+
code = arguments.get("code", "print('Hello, World!')")
|
98 |
+
return {"output": f"""Translated code: {code}"""}
|
99 |
+
|
100 |
+
class CodeOptimizationTool(Tool):
|
101 |
+
def __init__(self):
|
102 |
+
super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
|
103 |
+
|
104 |
+
def run(self, arguments):
|
105 |
+
code = arguments.get("code", "print('Hello, World!')")
|
106 |
+
return {"output": f"""Optimized code: {code}"""}
|
107 |
+
|
108 |
+
class CodeDocumentationTool(Tool):
|
109 |
+
def __init__(self):
|
110 |
+
super().__init__("Code Documentation", "Generates documentation for code snippets.")
|
111 |
+
|
112 |
+
def run(self, arguments):
|
113 |
+
code = arguments.get("code", "print('Hello, World!')")
|
114 |
+
return {"output": f"""Code documentation: {code}"""}
|
115 |
+
|
116 |
+
class ImageGenerationTool(Tool):
|
117 |
+
def __init__(self):
|
118 |
+
super().__init__("Image Generation", "Generates images based on text descriptions.")
|
119 |
+
|
120 |
+
def run(self, arguments):
|
121 |
+
description = arguments.get("description", "A cat sitting on a couch")
|
122 |
+
return {"output": f"""Generated image based on: {description}"""}
|
123 |
+
|
124 |
+
class ImageEditingTool(Tool):
|
125 |
+
def __init__(self):
|
126 |
+
super().__init__("Image Editing", "Modifying existing images.")
|
127 |
+
|
128 |
+
def run(self, arguments):
|
129 |
+
image_path = arguments.get("image_path", "path/to/image.jpg")
|
130 |
+
return {"output": f"""Image edited: {image_path}"""}
|
131 |
+
|
132 |
+
class ImageAnalysisTool(Tool):
|
133 |
+
def __init__(self):
|
134 |
+
super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
|
135 |
+
|
136 |
+
def run(self, arguments):
|
137 |
+
image_path = arguments.get("image_path", "path/to/image.jpg")
|
138 |
+
return {"output": f"""Image analysis results: {image_path}"""}
|
139 |
+
|
140 |
+
class EnhancedAIAgent(Agent):
|
141 |
+
def __init__(self, name: str, description: str, skills: List[str], llm: str):
|
142 |
+
super().__init__(name, description, skills)
|
143 |
+
self.text_gen_tool = TextGenerationTool()
|
144 |
+
self._hf_api = HfApi() # Initialize HfApi here
|
145 |
+
|
146 |
+
def generate_agent_response(self, prompt: str) -> str:
|
147 |
+
return self.text_gen_tool.run({"prompt": prompt})
|
148 |
+
|
149 |
+
def create_agent_prompt(self) -> str:
|
150 |
+
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
151 |
+
agent_prompt = f"""
|
152 |
+
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
153 |
+
{skills_str}
|
154 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
155 |
+
"""
|
156 |
+
return agent_prompt
|
157 |
+
|
158 |
+
def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict],
|
159 |
+
project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
|
160 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
161 |
+
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
162 |
+
return summary, next_step
|
163 |
+
|
164 |
+
def deploy_built_space_to_hf(self, project_name: str) -> str:
|
165 |
+
# Assuming you have a function that generates the space content
|
166 |
+
space_content = generate_space_content(project_name)
|
167 |
+
repository = self._hf_api.create_repo(
|
168 |
+
repo_id=project_name,
|
169 |
+
private=True,
|
170 |
+
token=hf_token,
|
171 |
+
exist_ok=True,
|
172 |
+
space_sdk="streamlit"
|
173 |
+
)
|
174 |
+
self._hf_api.upload_file(
|
175 |
+
path_or_fileobj=space_content,
|
176 |
+
path_in_repo="app.py",
|
177 |
+
repo_id=project_name,
|
178 |
+
repo_type="space",
|
179 |
+
token=hf_token
|
180 |
+
)
|
181 |
+
return repository.name
|
182 |
+
|
183 |
+
def has_valid_hf_token(self) -> bool:
|
184 |
+
return self._hf_api.whoami(token=hf_token) is not None
|
185 |
+
|
186 |
+
def generate_space_content(project_name: str) -> str:
|
187 |
+
# Logic to generate the Streamlit app content based on project_name
|
188 |
+
return f"""
|
189 |
+
import streamlit as st
|
190 |
+
|
191 |
+
st.title('{project_name}')
|
192 |
+
st.write('Hello, world!')
|
193 |
+
"""
|
194 |
+
|
195 |
+
# Example usage within your Streamlit app
|
196 |
+
if __name__ == "__main__":
|
197 |
+
llm = "bigcode/starcoder"
|
198 |
+
agent = EnhancedAIAgent(name="AI Assistant", description="Expert in code generation", skills=["Python", "Streamlit"], llm=llm)
|
199 |
+
response = agent.generate_agent_response("How can I help you today?")
|
200 |
+
print(response)
|