Spaces:
Sleeping
Sleeping
acecalisto3
commited on
Commit
•
ded0f49
1
Parent(s):
5fa6d40
Update app.py
Browse files
app.py
CHANGED
@@ -1,297 +1,555 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
32 |
-
|
33 |
-
# Function to fetch HTML content from GitHub issue pages
|
34 |
-
def fetch_issue_data(username, repository, start_page, end_page):
|
35 |
-
issues_data = []
|
36 |
-
for page in range(start_page, end_page + 1):
|
37 |
-
url = f"https://github.com/{username}/{repository}/issues?page={page}"
|
38 |
-
response = requests.get(url)
|
39 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
40 |
-
issue_elements = soup.find_all('div', class_='flex-shrink-0')
|
41 |
-
for issue_element in issue_elements:
|
42 |
-
issue_link = issue_element.find('a', class_='Link--primary')['href']
|
43 |
-
issue_url = f"https://github.com{issue_link}"
|
44 |
-
issue_data = fetch_issue_details(issue_url)
|
45 |
-
issues_data.append(issue_data)
|
46 |
-
return issues_data
|
47 |
-
|
48 |
-
# Function to fetch details of a specific issue
|
49 |
-
def fetch_issue_details(issue_url):
|
50 |
-
response = requests.get(issue_url)
|
51 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
52 |
-
issue_title = soup.find('h1', class_='gh-header-title').text.strip()
|
53 |
-
issue_body = soup.find('div', class_='markdown-body').text.strip()
|
54 |
-
issue_created_at = soup.find('relative-time')['datetime']
|
55 |
-
issue_closed_at = soup.find('relative-time', class_='no-wrap')
|
56 |
-
if issue_closed_at:
|
57 |
-
issue_closed_at = issue_closed_at['datetime']
|
58 |
-
else:
|
59 |
-
issue_closed_at = None
|
60 |
-
issue_author = soup.find('a', class_='author').text.strip()
|
61 |
-
issue_assignee = soup.find('a', class_='Link--muted')
|
62 |
-
if issue_assignee:
|
63 |
-
issue_assignee = issue_assignee.text.strip()
|
64 |
-
else:
|
65 |
-
issue_assignee = None
|
66 |
-
return {
|
67 |
-
'title': issue_title,
|
68 |
-
'body': issue_body,
|
69 |
-
'created_at': issue_created_at,
|
70 |
-
'closed_at': issue_closed_at,
|
71 |
-
'author': issue_author,
|
72 |
-
'assignee': issue_assignee
|
73 |
}
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
else:
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
print("Descriptive Statistics:")
|
101 |
-
print(df.describe())
|
102 |
-
|
103 |
-
# Visualizations
|
104 |
-
plt.figure(figsize=(10, 6))
|
105 |
-
sns.histplot(df['resolution_time'], kde=True)
|
106 |
-
plt.title('Distribution of Issue Resolution Time')
|
107 |
-
plt.xlabel('Resolution Time (Days)')
|
108 |
-
plt.ylabel('Frequency')
|
109 |
-
plt.show()
|
110 |
-
|
111 |
-
# Trend analysis
|
112 |
-
df['created_at_month'] = df['created_at'].dt.month
|
113 |
-
plt.figure(figsize=(10, 6))
|
114 |
-
sns.lineplot(x='created_at_month', y='resolution_time', data=df)
|
115 |
-
plt.title('Trend of Issue Resolution Time Over Months')
|
116 |
-
plt.xlabel('Month')
|
117 |
-
plt.ylabel('Resolution Time (Days)')
|
118 |
-
plt.show()
|
119 |
-
|
120 |
-
# Top Authors and Assignees
|
121 |
-
top_authors = df['author'].value_counts().nlargest(10)
|
122 |
-
top_assignees = df['assignee'].value_counts().nlargest(10)
|
123 |
-
print("\nTop 10 Authors:")
|
124 |
-
print(top_authors)
|
125 |
-
print("\nTop 10 Assignees:")
|
126 |
-
print(top_assignees)
|
127 |
-
|
128 |
-
# Function for text analysis using NLP
|
129 |
-
def analyze_text_content(df):
|
130 |
-
# Text preprocessing
|
131 |
-
stop_words = set(stopwords.words('english'))
|
132 |
-
lemmatizer = WordNetLemmatizer()
|
133 |
-
df['processed_body'] = df['body'].apply(lambda text: ' '.join([lemmatizer.lemmatize(word) for word in word_tokenize(text) if word.lower() not in stop_words]))
|
134 |
-
|
135 |
-
# Topic modeling
|
136 |
-
dictionary = Dictionary([word_tokenize(text) for text in df['processed_body']])
|
137 |
-
corpus = [dictionary.doc2bow(word_tokenize(text)) for text in df['processed_body']]
|
138 |
-
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary)
|
139 |
-
print("Top 5 Topics:")
|
140 |
-
for topic in lda_model.print_topics(num_words=5):
|
141 |
-
print(topic)
|
142 |
-
|
143 |
-
# Sentiment analysis
|
144 |
-
analyzer = SentimentIntensityAnalyzer()
|
145 |
-
df['sentiment'] = df['body'].apply(lambda text: analyzer.polarity_scores(text)['compound'])
|
146 |
-
print("Sentiment Analysis:")
|
147 |
-
print(df['sentiment'].describe())
|
148 |
-
|
149 |
-
# Word Cloud for Common Words
|
150 |
-
from wordcloud import WordCloud
|
151 |
-
all_words = ' '.join([text for text in df['processed_body']])
|
152 |
-
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_words)
|
153 |
-
plt.figure(figsize=(10, 6), facecolor=None)
|
154 |
-
plt.imshow(wordcloud)
|
155 |
-
plt.axis("off")
|
156 |
-
plt.tight_layout(pad=0)
|
157 |
-
plt.show()
|
158 |
-
|
159 |
-
# Function to create a network graph of issues, authors, and assignees
|
160 |
-
def create_network_graph(df):
|
161 |
-
graph = nx.Graph()
|
162 |
-
for index, row in df.iterrows():
|
163 |
-
graph.add_node(row['title'], type='issue')
|
164 |
-
graph.add_node(row['author'], type='author')
|
165 |
-
if row['assignee']:
|
166 |
-
graph.add_node(row['assignee'], type='assignee')
|
167 |
-
graph.add_edge(row['title'], row['author'])
|
168 |
-
if row['assignee']:
|
169 |
-
graph.add_edge(row['title'], row['assignee'])
|
170 |
-
|
171 |
-
# Interactive Network Graph with Plotly
|
172 |
-
pos = nx.spring_layout(graph, k=0.5)
|
173 |
-
edge_x = []
|
174 |
-
edge_y = []
|
175 |
-
for edge in graph.edges():
|
176 |
-
x0, y0 = pos[edge[0]]
|
177 |
-
x1, y1 = pos[edge[1]]
|
178 |
-
edge_x.append([x0, x1, None])
|
179 |
-
edge_y.append([y0, y1, None])
|
180 |
-
|
181 |
-
edge_trace = go.Scatter(
|
182 |
-
x=edge_x,
|
183 |
-
y=edge_y,
|
184 |
-
line=dict(width=0.5, color='#888'),
|
185 |
-
hoverinfo='none',
|
186 |
-
mode='lines'
|
187 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
node_trace.marker.color = node_colors
|
225 |
-
node_trace.text = node_labels
|
226 |
-
|
227 |
-
# Create the figure
|
228 |
-
fig = go.Figure(data=[edge_trace, node_trace],
|
229 |
-
layout=go.Layout(
|
230 |
-
title="GitHub Issue Network Graph",
|
231 |
-
showlegend=False,
|
232 |
-
hovermode='closest',
|
233 |
-
margin=dict(b=20, l=5, r=5, t=40),
|
234 |
-
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
235 |
-
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
|
236 |
-
)
|
237 |
-
)
|
238 |
-
|
239 |
-
fig.show()
|
240 |
-
|
241 |
-
# Function to build a predictive model for issue resolution time
|
242 |
-
def build_predictive_model(df):
|
243 |
-
# Feature engineering
|
244 |
-
df['created_at_day'] = df['created_at'].dt.day
|
245 |
-
df['created_at_weekday'] = df['created_at'].dt.weekday
|
246 |
-
df['created_at_hour'] = df['created_at'].dt.hour
|
247 |
-
df['author_encoded'] = df['author'].astype('category').cat.codes
|
248 |
-
df['assignee_encoded'] = df['assignee'].astype('category').cat.codes
|
249 |
-
|
250 |
-
# Select features and target variable
|
251 |
-
features = ['created_at_day', 'created_at_weekday', 'created_at_hour', 'author_encoded', 'assignee_encoded', 'sentiment']
|
252 |
-
target = 'resolution_time'
|
253 |
-
|
254 |
-
# Split data into training and testing sets
|
255 |
-
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=42)
|
256 |
-
|
257 |
-
# Create a pipeline for feature scaling and model training
|
258 |
-
pipeline = Pipeline([
|
259 |
-
('scaler', StandardScaler()),
|
260 |
-
('model', RandomForestClassifier(random_state=42))
|
261 |
-
])
|
262 |
-
|
263 |
-
# Train the model
|
264 |
-
pipeline.fit(X_train, y_train)
|
265 |
-
|
266 |
-
# Evaluate the model
|
267 |
-
y_pred = pipeline.predict(X_test)
|
268 |
-
accuracy = accuracy_score(y_test, y_pred)
|
269 |
-
print("Accuracy:", accuracy)
|
270 |
-
print(classification_report(y_test, y_pred))
|
271 |
-
|
272 |
-
# Make predictions on new data
|
273 |
-
# ...
|
274 |
-
|
275 |
-
# Main function
|
276 |
-
if __name__ == "__main__":
|
277 |
-
# Replace with your GitHub username and repository name
|
278 |
-
username = "miagiii"
|
279 |
-
repository = "miagiii"
|
280 |
-
|
281 |
-
# Fetch issue data from GitHub
|
282 |
-
issues_data = fetch_issue_data(username, repository, 1, 10) # Fetch issues from pages 1 to 10
|
283 |
-
|
284 |
-
# Clean and structure the data
|
285 |
-
df = clean_and_structure_data(issues_data)
|
286 |
-
|
287 |
-
# Perform exploratory data analysis (EDA)
|
288 |
-
perform_eda(df)
|
289 |
-
|
290 |
-
# Analyze text content using NLP
|
291 |
-
analyze_text_content(df)
|
292 |
-
|
293 |
-
# Create a network graph of issues, authors, and assignees
|
294 |
-
create_network_graph(df)
|
295 |
-
|
296 |
-
# Build a predictive model for issue resolution time
|
297 |
-
build_predictive_model(df)
|
|
|
1 |
+
import subprocess
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
4 |
+
import black
|
5 |
+
from pylint import lint
|
6 |
+
from io import StringIO
|
7 |
+
import sys
|
8 |
+
import torch
|
9 |
+
from huggingface_hub import hf_hub_url, cached_download, HfApi
|
10 |
+
|
11 |
+
# Set your Hugging Face API key here
|
12 |
+
hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
13 |
+
|
14 |
+
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
15 |
+
PROJECT_ROOT = "projects"
|
16 |
+
AGENT_DIRECTORY = "agents"
|
17 |
+
|
18 |
+
# Global state to manage communication between Tool Box and Workspace Chat App
|
19 |
+
if 'chat_history' not in st.session_state:
|
20 |
+
st.session_state.chat_history = []
|
21 |
+
if 'terminal_history' not in st.session_state:
|
22 |
+
st.session_state.terminal_history = []
|
23 |
+
if 'workspace_projects' not in st.session_state:
|
24 |
+
st.session_state.workspace_projects = {}
|
25 |
+
if 'available_agents' not in st.session_state:
|
26 |
+
st.session_state.available_agents = []
|
27 |
+
if 'current_state' not in st.session_state:
|
28 |
+
st.session_state.current_state = {
|
29 |
+
'toolbox': {},
|
30 |
+
'workspace_chat': {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
|
33 |
+
# List of top downloaded free code-generative models from Hugging Face Hub
|
34 |
+
AVAILABLE_CODE_GENERATIVE_MODELS = [
|
35 |
+
"bigcode/starcoder", # Popular and powerful
|
36 |
+
"Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
|
37 |
+
"microsoft/CodeGPT-small", # Smaller, good for quick tasks
|
38 |
+
"google/flan-t5-xl", # Powerful, good for complex tasks
|
39 |
+
"facebook/bart-large-cnn", # Good for text-to-code tasks
|
40 |
+
]
|
41 |
+
|
42 |
+
# Load pre-trained RAG retriever
|
43 |
+
rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
|
44 |
+
|
45 |
+
# Load pre-trained chat model
|
46 |
+
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
|
47 |
+
|
48 |
+
# Load tokenizer
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
50 |
+
|
51 |
+
def process_input(user_input):
|
52 |
+
# Input pipeline: Tokenize and preprocess user input
|
53 |
+
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
54 |
+
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
55 |
+
|
56 |
+
# RAG model: Generate response
|
57 |
+
with torch.no_grad():
|
58 |
+
output = rag_retriever(input_ids, attention_mask=attention_mask)
|
59 |
+
response = output.generator_outputs[0].sequences[0]
|
60 |
+
|
61 |
+
# Chat model: Refine response
|
62 |
+
chat_input = tokenizer(response, return_tensors="pt")
|
63 |
+
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
|
64 |
+
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
|
65 |
+
with torch.no_grad():
|
66 |
+
chat_output = chat_model(**chat_input)
|
67 |
+
refined_response = chat_output.sequences[0]
|
68 |
+
|
69 |
+
# Output pipeline: Return final response
|
70 |
+
return refined_response
|
71 |
+
|
72 |
+
class AIAgent:
|
73 |
+
def __init__(self, name, description, skills):
|
74 |
+
self.name = name
|
75 |
+
self.description = description
|
76 |
+
self.skills = skills
|
77 |
+
|
78 |
+
def create_agent_prompt(self):
|
79 |
+
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
80 |
+
agent_prompt = f"""
|
81 |
+
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
82 |
+
{skills_str}
|
83 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
84 |
+
"""
|
85 |
+
return agent_prompt
|
86 |
+
|
87 |
+
def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model):
|
88 |
+
"""
|
89 |
+
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
90 |
+
"""
|
91 |
+
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
92 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
93 |
+
|
94 |
+
# Analyze chat history and workspace projects to suggest actions
|
95 |
+
# Example:
|
96 |
+
# - Check if the user has requested to create a new file
|
97 |
+
# - Check if the user has requested to install a package
|
98 |
+
# - Check if the user has requested to run a command
|
99 |
+
# - Check if the user has requested to generate code
|
100 |
+
# - Check if the user has requested to translate code
|
101 |
+
# - Check if the user has requested to summarize text
|
102 |
+
# - Check if the user has requested to analyze sentiment
|
103 |
+
|
104 |
+
# Generate a response based on the analysis
|
105 |
+
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
106 |
+
|
107 |
+
# Ensure project folder exists
|
108 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
109 |
+
if not os.path.exists(project_path):
|
110 |
+
os.makedirs(project_path)
|
111 |
+
|
112 |
+
# Create requirements.txt if it doesn't exist
|
113 |
+
requirements_file = os.path.join(project_path, "requirements.txt")
|
114 |
+
if not os.path.exists(requirements_file):
|
115 |
+
with open(requirements_file, "w") as f:
|
116 |
+
f.write("# Add your project's dependencies here\n")
|
117 |
+
|
118 |
+
# Create app.py if it doesn't exist
|
119 |
+
app_file = os.path.join(project_path, "app.py")
|
120 |
+
if not os.path.exists(app_file):
|
121 |
+
with open(app_file, "w") as f:
|
122 |
+
f.write("# Your project's main application logic goes here\n")
|
123 |
+
|
124 |
+
# Generate GUI code for app.py if requested
|
125 |
+
if "create a gui" in summary.lower():
|
126 |
+
gui_code = generate_code("Create a simple GUI for this application", selected_model)
|
127 |
+
with open(app_file, "a") as f:
|
128 |
+
f.write(gui_code)
|
129 |
+
|
130 |
+
# Run the default build process
|
131 |
+
build_command = "pip install -r requirements.txt && python app.py"
|
132 |
+
try:
|
133 |
+
result = subprocess.run(build_command, shell=True, capture_output=True, text=True, cwd=project_path)
|
134 |
+
st.write(f"Build Output:\n{result.stdout}")
|
135 |
+
if result.stderr:
|
136 |
+
st.error(f"Build Errors:\n{result.stderr}")
|
137 |
+
except Exception as e:
|
138 |
+
st.error(f"Build Error: {e}")
|
139 |
+
|
140 |
+
return summary, next_step
|
141 |
+
|
142 |
+
def save_agent_to_file(agent):
|
143 |
+
"""Saves the agent's prompt to a file."""
|
144 |
+
if not os.path.exists(AGENT_DIRECTORY):
|
145 |
+
os.makedirs(AGENT_DIRECTORY)
|
146 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
147 |
+
with open(file_path, "w") as file:
|
148 |
+
file.write(agent.create_agent_prompt())
|
149 |
+
st.session_state.available_agents.append(agent.name)
|
150 |
+
|
151 |
+
def load_agent_prompt(agent_name):
|
152 |
+
"""Loads an agent prompt from a file."""
|
153 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
154 |
+
if os.path.exists(file_path):
|
155 |
+
with open(file_path, "r") as file:
|
156 |
+
agent_prompt = file.read()
|
157 |
+
return agent_prompt
|
158 |
else:
|
159 |
+
return None
|
160 |
+
|
161 |
+
def create_agent_from_text(name, text):
|
162 |
+
skills = text.split('\n')
|
163 |
+
agent = AIAgent(name, "AI agent created from text input.", skills)
|
164 |
+
save_agent_to_file(agent)
|
165 |
+
return agent.create_agent_prompt()
|
166 |
+
|
167 |
+
def chat_interface_with_agent(input_text, agent_name):
|
168 |
+
agent_prompt = load_agent_prompt(agent_name)
|
169 |
+
if agent_prompt is None:
|
170 |
+
return f"Agent {agent_name} not found."
|
171 |
+
|
172 |
+
model_name ="MaziyarPanahi/Codestral-22B-v0.1-GGUF"
|
173 |
+
try:
|
174 |
+
from transformers import AutoModel, AutoTokenizer # Import AutoModel here
|
175 |
+
model = AutoModel.from_pretrained("MaziyarPanahi/Codestral-22B-v0.1-GGUF")
|
176 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
177 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
178 |
+
except EnvironmentError as e:
|
179 |
+
return f"Error loading model: {e}"
|
180 |
+
|
181 |
+
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
182 |
|
183 |
+
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
184 |
+
max_input_length = 900
|
185 |
+
if input_ids.shape[1] > max_input_length:
|
186 |
+
input_ids = input_ids[:, :max_input_length]
|
187 |
+
|
188 |
+
outputs = model.generate(
|
189 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
|
190 |
+
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
)
|
192 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
193 |
+
return response
|
194 |
+
|
195 |
+
# Terminal interface
|
196 |
+
def terminal_interface(command, project_name=None):
|
197 |
+
if project_name:
|
198 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
199 |
+
if not os.path.exists(project_path):
|
200 |
+
return f"Project {project_name} does not exist."
|
201 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
|
202 |
+
else:
|
203 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
204 |
+
return result.stdout
|
205 |
+
|
206 |
+
# Code editor interface
|
207 |
+
def code_editor_interface(code):
|
208 |
+
try:
|
209 |
+
formatted_code = black.format_str(code, mode=black.FileMode())
|
210 |
+
except black.NothingChanged:
|
211 |
+
formatted_code = code
|
212 |
+
|
213 |
+
result = StringIO()
|
214 |
+
sys.stdout = result
|
215 |
+
sys.stderr = result
|
216 |
+
|
217 |
+
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
218 |
+
sys.stdout = sys.__stdout__
|
219 |
+
sys.stderr = sys.__stderr__
|
220 |
+
|
221 |
+
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
222 |
+
|
223 |
+
return formatted_code, lint_message
|
224 |
+
|
225 |
+
# Text summarization tool
|
226 |
+
def summarize_text(text):
|
227 |
+
summarizer = pipeline("summarization")
|
228 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
229 |
+
return summary[0]['summary_text']
|
230 |
+
|
231 |
+
# Sentiment analysis tool
|
232 |
+
def sentiment_analysis(text):
|
233 |
+
analyzer = pipeline("sentiment-analysis")
|
234 |
+
result = analyzer(text)
|
235 |
+
return result[0]['label']
|
236 |
+
|
237 |
+
# Text translation tool (code translation)
|
238 |
+
def translate_code(code, source_language, target_language):
|
239 |
+
# Use a Hugging Face translation model instead of OpenAI
|
240 |
+
translator = pipeline("translation", model="bartowski/Codestral-22B-v0.1-GGUF") # Example: English to Spanish
|
241 |
+
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
242 |
+
return translated_code
|
243 |
+
|
244 |
+
def generate_code(code_idea, model_name):
|
245 |
+
"""Generates code using the selected model."""
|
246 |
+
try:
|
247 |
+
generator = pipeline('text-generation', model=model_name)
|
248 |
+
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
|
249 |
+
return generated_code
|
250 |
+
except Exception as e:
|
251 |
+
return f"Error generating code: {e}"
|
252 |
+
|
253 |
+
def chat_interface(input_text):
|
254 |
+
"""Handles general chat interactions with the user."""
|
255 |
+
# Use a Hugging Face chatbot model or your own logic
|
256 |
+
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
257 |
+
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
258 |
+
return response
|
259 |
+
|
260 |
+
# Workspace interface
|
261 |
+
def workspace_interface(project_name):
|
262 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
263 |
+
if not os.path.exists(project_path):
|
264 |
+
os.makedirs(project_path)
|
265 |
+
st.session_state.workspace_projects[project_name] = {'files': []}
|
266 |
+
return f"Project '{project_name}' created successfully."
|
267 |
+
else:
|
268 |
+
return f"Project '{project_name}' already exists."
|
269 |
|
270 |
+
# Add code to workspace
|
271 |
+
def add_code_to_workspace(project_name, code, file_name):
|
272 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
273 |
+
if not os.path.exists(project_path):
|
274 |
+
return f"Project '{project_name}' does not exist."
|
275 |
+
|
276 |
+
file_path = os.path.join(project_path, file_name)
|
277 |
+
with open(file_path, "w") as file:
|
278 |
+
file.write(code)
|
279 |
+
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
280 |
+
return f"Code added to '{file_name}' in project '{project_name}'."
|
281 |
+
|
282 |
+
# Streamlit App
|
283 |
+
st.title("AI Agent Creator")
|
284 |
+
|
285 |
+
# Sidebar navigation
|
286 |
+
st.sidebar.title("Navigation")
|
287 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
288 |
+
|
289 |
+
# Get Hugging Face token from secrets.toml
|
290 |
+
hf_token = st.secrets["huggingface"]["hf_token"]
|
291 |
+
|
292 |
+
if app_mode == "AI Agent Creator":
|
293 |
+
# AI Agent Creator
|
294 |
+
st.header("Create an AI Agent from Text")
|
295 |
+
|
296 |
+
st.subheader("From Text")
|
297 |
+
agent_name = st.text_input("Enter agent name:")
|
298 |
+
text_input = st.text_area("Enter skills (one per line):")
|
299 |
+
if st.button("Create Agent"):
|
300 |
+
agent_prompt = create_agent_from_text(agent_name, text_input)
|
301 |
+
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
302 |
+
st.session_state.available_agents.append(agent_name)
|
303 |
+
|
304 |
+
elif app_mode == "Tool Box":
|
305 |
+
# Tool Box
|
306 |
+
st.header("AI-Powered Tools")
|
307 |
+
|
308 |
+
# Chat Interface
|
309 |
+
st.subheader("Chat with CodeCraft")
|
310 |
+
chat_input = st.text_area("Enter your message:")
|
311 |
+
if st.button("Send"):
|
312 |
+
chat_response = chat_interface(chat_input)
|
313 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
314 |
+
st.write(f"CodeCraft: {chat_response}")
|
315 |
+
|
316 |
+
# Terminal Interface
|
317 |
+
st.subheader("Terminal")
|
318 |
+
terminal_input = st.text_input("Enter a command:")
|
319 |
+
if st.button("Run"):
|
320 |
+
terminal_output = terminal_interface(terminal_input)
|
321 |
+
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
322 |
+
st.code(terminal_output, language="bash")
|
323 |
+
|
324 |
+
# Code Editor Interface
|
325 |
+
st.subheader("Code Editor")
|
326 |
+
code_editor = st.text_area("Write your code:", height=300)
|
327 |
+
if st.button("Format & Lint"):
|
328 |
+
formatted_code, lint_message = code_editor_interface(code_editor)
|
329 |
+
st.code(formatted_code, language="python")
|
330 |
+
st.info(lint_message)
|
331 |
+
|
332 |
+
# Text Summarization Tool
|
333 |
+
st.subheader("Summarize Text")
|
334 |
+
text_to_summarize = st.text_area("Enter text to summarize:")
|
335 |
+
if st.button("Summarize"):
|
336 |
+
summary = summarize_text(text_to_summarize)
|
337 |
+
st.write(f"Summary: {summary}")
|
338 |
+
|
339 |
+
# Sentiment Analysis Tool
|
340 |
+
st.subheader("Sentiment Analysis")
|
341 |
+
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
342 |
+
if st.button("Analyze Sentiment"):
|
343 |
+
sentiment = sentiment_analysis(sentiment_text)
|
344 |
+
st.write(f"Sentiment: {sentiment}")
|
345 |
+
|
346 |
+
# Text Translation Tool (Code Translation)
|
347 |
+
st.subheader("Translate Code")
|
348 |
+
code_to_translate = st.text_area("Enter code to translate:")
|
349 |
+
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
350 |
+
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
|
351 |
+
if st.button("Translate Code"):
|
352 |
+
translated_code = translate_code(code_to_translate, source_language, target_language)
|
353 |
+
st.code(translated_code, language=target_language.lower())
|
354 |
+
|
355 |
+
# Code Generation
|
356 |
+
st.subheader("Code Generation")
|
357 |
+
code_idea = st.text_input("Enter your code idea:")
|
358 |
+
if st.button("Generate Code"):
|
359 |
+
generated_code = generate_code(code_idea)
|
360 |
+
st.code(generated_code, language="python")
|
361 |
+
|
362 |
+
elif app_mode == "Workspace Chat App":
|
363 |
+
# Workspace Chat App
|
364 |
+
st.header("Workspace Chat App")
|
365 |
+
|
366 |
+
# Project Workspace Creation
|
367 |
+
st.subheader("Create a New Project")
|
368 |
+
project_name = st.text_input("Enter project name:")
|
369 |
+
if st.button("Create Project"):
|
370 |
+
workspace_status = workspace_interface(project_name)
|
371 |
+
st.success(workspace_status)
|
372 |
+
|
373 |
+
# Automatically create requirements.txt and app.py
|
374 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
375 |
+
requirements_file = os.path.join(project_path, "requirements.txt")
|
376 |
+
if not os.path.exists(requirements_file):
|
377 |
+
with open(requirements_file, "w") as f:
|
378 |
+
f.write("# Add your project's dependencies here\n")
|
379 |
+
|
380 |
+
app_file = os.path.join(project_path, "app.py")
|
381 |
+
if not os.path.exists(app_file):
|
382 |
+
with open(app_file, "w") as f:
|
383 |
+
f.write("# Your project's main application logic goes here\n")
|
384 |
+
|
385 |
+
# Add Code to Workspace
|
386 |
+
st.subheader("Add Code to Workspace")
|
387 |
+
code_to_add = st.text_area("Enter code to add to workspace:")
|
388 |
+
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
389 |
+
if st.button("Add Code"):
|
390 |
+
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
391 |
+
st.session_state.terminal_history.append((f"Add Code: {code_to_add}", add_code_status))
|
392 |
+
st.success(add_code_status)
|
393 |
+
|
394 |
+
# Terminal Interface with Project Context
|
395 |
+
st.subheader("Terminal (Workspace Context)")
|
396 |
+
terminal_input = st.text_input("Enter a command within the workspace:")
|
397 |
+
if st.button("Run Command"):
|
398 |
+
terminal_output = terminal_interface(terminal_input, project_name)
|
399 |
+
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
400 |
+
st.code(terminal_output, language="bash")
|
401 |
+
|
402 |
+
# Chat Interface for Guidance
|
403 |
+
st.subheader("Chat with CodeCraft for Guidance")
|
404 |
+
chat_input = st.text_area("Enter your message for guidance:")
|
405 |
+
if st.button("Get Guidance"):
|
406 |
+
chat_response = chat_interface(chat_input)
|
407 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
408 |
+
st.write(f"CodeCraft: {chat_response}")
|
409 |
+
|
410 |
+
# Display Chat History
|
411 |
+
st.subheader("Chat History")
|
412 |
+
for user_input, response in st.session_state.chat_history:
|
413 |
+
st.write(f"User: {user_input}")
|
414 |
+
st.write(f"CodeCraft: {response}")
|
415 |
+
|
416 |
+
# Display Terminal History
|
417 |
+
st.subheader("Terminal History")
|
418 |
+
for command, output in st.session_state.terminal_history:
|
419 |
+
st.write(f"Command: {command}")
|
420 |
+
st.code(output, language="bash")
|
421 |
+
|
422 |
+
# Display Projects and Files
|
423 |
+
st.subheader("Workspace Projects")
|
424 |
+
for project, details in st.session_state.workspace_projects.items():
|
425 |
+
st.write(f"Project: {project}")
|
426 |
+
for file in details['files']:
|
427 |
+
st.write(f" - {file}")
|
428 |
+
|
429 |
+
# Chat with AI Agents
|
430 |
+
st.subheader("Chat with AI Agents")
|
431 |
+
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
432 |
+
agent_chat_input = st.text_area("Enter your message for the agent:")
|
433 |
+
if st.button("Send to Agent"):
|
434 |
+
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
435 |
+
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
436 |
+
st.write(f"{selected_agent}: {agent_chat_response}")
|
437 |
+
|
438 |
+
# Code Generation
|
439 |
+
st.subheader("Code Generation")
|
440 |
+
code_idea = st.text_input("Enter your code idea:")
|
441 |
+
|
442 |
+
# Model Selection Menu
|
443 |
+
selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
444 |
+
|
445 |
+
if st.button("Generate Code"):
|
446 |
+
generated_code = generate_code(code_idea, selected_model)
|
447 |
+
st.code(generated_code, language="python")
|
448 |
+
|
449 |
+
# Automate Build Process
|
450 |
+
st.subheader("Automate Build Process")
|
451 |
+
if st.button("Automate"):
|
452 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
453 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
|
454 |
+
st.write("Autonomous Build Summary:")
|
455 |
+
st.write(summary)
|
456 |
+
st.write("Next Step:")
|
457 |
+
st.write(next_step)
|
458 |
+
|
459 |
+
# Use the hf_token to interact with the Hugging Face API
|
460 |
+
api = HfApi(token=hf_token)
|
461 |
+
# Function to create a Space on Hugging Face
|
462 |
+
def create_space(api, name, description, public, files, entrypoint="launch.py"):
|
463 |
+
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
464 |
+
headers = {"Authorization": f"Bearer {api.access_token}"}````
|
465 |
+
|
466 |
+
i need to integrate logic from these below, into my existing app.py above:
|
467 |
+
````import os
|
468 |
+
import subprocess
|
469 |
+
import streamlit as st
|
470 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
471 |
+
import black
|
472 |
+
from pylint import lint
|
473 |
+
from io import StringIO
|
474 |
+
import sys
|
475 |
+
import torch
|
476 |
+
from huggingface_hub import hf_hub_url, cached_download, HfApi
|
477 |
+
|
478 |
+
# Set your Hugging Face API key here
|
479 |
+
hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
480 |
+
|
481 |
+
# Other code remains unchanged
|
482 |
+
|
483 |
+
class AIAgent:
|
484 |
+
def __init__(self, name, description, skills, hf_api=None):
|
485 |
+
self.name = name
|
486 |
+
self.description = description
|
487 |
+
self.skills = skills
|
488 |
+
self._hf_api = hf_api
|
489 |
+
|
490 |
+
@property
|
491 |
+
def hf_api(self):
|
492 |
+
if not self._hf_api and self.has_valid_hf_token():
|
493 |
+
self._hf_api = HfApi(token=self._hf_token)
|
494 |
+
return self._hf_api
|
495 |
+
|
496 |
+
def has_valid_hf_token(self):
|
497 |
+
return bool(self._hf_token)
|
498 |
+
|
499 |
+
async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
|
500 |
+
self._hf_token = hf_token
|
501 |
+
# Continuation of previous methods
|
502 |
+
|
503 |
+
def deploy_built_space_to_hf(self):
|
504 |
+
if not self._hf_api or not self._hf_token:
|
505 |
+
raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.")
|
506 |
+
|
507 |
+
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
|
508 |
+
files = get_built_space_files()
|
509 |
+
|
510 |
+
commit_response = self.hf_api.commit_repo(
|
511 |
+
repo_id=repository_name,
|
512 |
+
branch="main",
|
513 |
+
commits=[{"message": "Built Space Commit", "tree": tree_payload}]
|
514 |
+
)
|
515 |
+
|
516 |
+
print("Commit successful:", commit_response)
|
517 |
+
self.publish_space(repository_name)
|
518 |
+
|
519 |
+
def publish_space(self, repository_name):
|
520 |
+
publishing_response = self.hf_api.create_model_version(
|
521 |
+
model_name=repository_name,
|
522 |
+
repo_id=repository_name,
|
523 |
+
model_card={},
|
524 |
+
library_card={}
|
525 |
+
)
|
526 |
+
|
527 |
+
print("Space published:", publishing_response)
|
528 |
+
|
529 |
+
def create_space(api, name, description, public, files, entrypoint="launch.py"):
|
530 |
+
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
531 |
+
headers = {"Authorization": f"Bearer {api.access_token}"}
|
532 |
+
|
533 |
+
payload = {
|
534 |
+
"public": public,
|
535 |
+
"gitignore_template": "web",
|
536 |
+
"default_branch": "main",
|
537 |
+
"archived": False,
|
538 |
+
"files": []
|
539 |
+
}
|
540 |
|
541 |
+
for filename, contents in files.items():
|
542 |
+
data = {
|
543 |
+
"content": contents,
|
544 |
+
"path": filename,
|
545 |
+
"encoding": "utf-8",
|
546 |
+
"mode": "overwrite" if "#{random.randint(0, 1)}" not in contents else "merge",
|
547 |
+
}
|
548 |
+
payload["files"].append(data)
|
549 |
+
|
550 |
+
response = requests.post(url, json=payload, headers=headers)
|
551 |
+
response.raise_for_status()
|
552 |
+
location = response.headers.get("Location")
|
553 |
+
wait_for_processing(location, api)
|
554 |
+
|
555 |
+
return Repository(name=name, api=api)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|