MistriDevLab / app.py
acecalisto3's picture
Update app.py
f379f50 verified
raw
history blame
21.9 kB
import os
import subprocess
import streamlit as st
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
import sys
from datetime import datetime
import requests
from bs4 import BeautifulSoup
from typing import List, Dict, Optional
# --- Custom Exceptions for Enhanced Error Handling ---
class InvalidActionError(Exception):
"""Raised when an invalid action is provided."""
pass
class InvalidInputError(Exception):
"""Raised when invalid input is provided for an action."""
pass
class CodeGenerationError(Exception):
"""Raised when code generation fails."""
pass
class AppTestingError(Exception):
"""Raised when app testing fails."""
pass
class WorkspaceExplorerError(Exception):
"""Raised when workspace exploration fails."""
pass
class PromptManagementError(Exception):
"""Raised when prompt management fails."""
pass
class SearchError(Exception):
"""Raised when search fails."""
pass
class CodeRefinementError(Exception):
"""Raised when code refinement fails."""
pass
class CodeTestingError(Exception):
"""Raised when code testing fails."""
pass
class CodeIntegrationError(Exception):
"""Raised when code integration fails."""
pass
# --- AI Agent Class ---
class AIAgent:
def __init__(self):
# --- Initialize Tools and Attributes ---
self.tools = {
"SEARCH": self.search,
"CODEGEN": self.code_generation,
"REFINE-CODE": self.refine_code, # Use internal function
"TEST-CODE": self.test_code, # Use internal function
"INTEGRATE-CODE": self.integrate_code, # Use internal function
"TEST-APP": self.test_app,
"GENERATE-REPORT": self.generate_report,
"WORKSPACE-EXPLORER": self.workspace_explorer,
"ADD_PROMPT": self.add_prompt,
"ACTION_PROMPT": self.action_prompt,
"COMPRESS_HISTORY_PROMPT": self.compress_history_prompt,
"LOG_PROMPT": self.log_prompt,
"LOG_RESPONSE": self.log_response,
"MODIFY_PROMPT": self.modify_prompt,
"PREFIX": self.prefix,
"SEARCH_QUERY": self.search_query,
"READ_PROMPT": self.read_prompt,
"TASK_PROMPT": self.task_prompt,
"UNDERSTAND_TEST_RESULTS_PROMPT": self.understand_test_results_prompt,
"EXECUTE_COMMAND": self.execute_command, # Add command execution
"PYTHON_INTERPRET": self.python_interpret, # Add Python interpretation
"NLP": self.nlp, # Add NLP capabilities
}
self.task_history: List[Dict[str, str]] = []
self.current_task: Optional[str] = None
self.search_engine_url: str = "https://www.google.com/search?q=" # Default search engine
self.prompts: List[str] = [] # Store prompts for future use
self.code_generator = None # Initialize code generator later
self.available_models = [
"gpt2",
"facebook/bart-large-cnn",
"google/flan-t5-xl",
"bigscience/T0_3B",
] # Add more as needed
self.selected_model = "gpt2" # Default model
self.nlp_pipeline = None # Initialize NLP pipeline later
# --- Search Functionality ---
def search(self, query: str) -> List[str]:
"""Performs a web search using the specified search engine."""
search_url = self.search_engine_url + query
try:
response = requests.get(search_url)
response.raise_for_status() # Raise an exception for bad status codes
soup = BeautifulSoup(response.content, 'html.parser')
results = soup.find_all('a', href=True)
return [result['href'] for result in results]
except requests.exceptions.RequestException as e:
raise SearchError(f"Error during search: {e}")
# --- Code Generation Functionality ---
def code_generation(self, snippet: str) -> str:
"""Generates code based on the provided snippet or description."""
try:
if not self.code_generator:
self.code_generator = pipeline(
'text-generation', model=self.selected_model
)
generated_text = self.code_generator(
snippet, max_length=500, num_return_sequences=1
)[0]['generated_text']
return generated_text
except Exception as e:
raise CodeGenerationError(f"Error during code generation: {e}")
# --- Code Refinement Functionality ---
def refine_code(self, code: str) -> str:
"""Refines the provided code string."""
try:
refined_code = black.format_str(code, mode=black.FileMode())
return refined_code
except black.InvalidInput:
raise CodeRefinementError("Error: Invalid code input for black formatting.")
except Exception as e:
raise CodeRefinementError(f"Error during code refinement: {e}")
# --- Code Testing Functionality ---
def test_code(self, code: str) -> str:
"""Tests the provided code string using pylint."""
try:
# Use pylint to lint the code
lint_output = StringIO()
sys.stdout = lint_output
lint.Run(code.split('\n'), do_exit=False)
sys.stdout = sys.__stdout__
return lint_output.getvalue()
except Exception as e:
raise CodeTestingError(f"Error during code testing: {e}")
# --- Code Integration Functionality ---
def integrate_code(self, file_path: str, code_snippet: str) -> str:
"""Integrates the code snippet into the specified file."""
try:
# For simplicity, we'll just append the code snippet to the file
# In a real scenario, you'd need more sophisticated logic
with open(file_path, 'a') as f:
f.write(code_snippet)
return f"Code snippet integrated into {file_path}"
except Exception as e:
raise CodeIntegrationError(f"Error during code integration: {e}")
# --- App Testing Functionality ---
def test_app(self) -> str:
"""Tests the functionality of the app."""
try:
subprocess.run(['streamlit', 'run', 'app.py'], check=True)
return "App tested successfully."
except subprocess.CalledProcessError as e:
raise AppTestingError(f"Error during app testing: {e}")
# --- Report Generation Functionality ---
def generate_report(self) -> str:
"""Generates a report based on the task history."""
report = f"## Task Report: {self.current_task}\n\n"
for task in self.task_history:
report += f"**Action:** {task['action']}\n"
report += f"**Input:** {task['input']}\n"
report += f"**Output:** {task['output']}\n\n"
return report
# --- Workspace Exploration Functionality ---
def workspace_explorer(self) -> str:
"""Provides a workspace explorer functionality."""
try:
current_directory = os.getcwd()
directories = []
files = []
for item in os.listdir(current_directory):
item_path = os.path.join(current_directory, item)
if os.path.isdir(item_path):
directories.append(item)
elif os.path.isfile(item_path):
files.append(item)
return f"**Directories:** {directories}\n**Files:** {files}"
except Exception as e:
raise WorkspaceExplorerError(f"Error during workspace exploration: {e}")
# --- Prompt Management Functionality ---
def add_prompt(self, prompt: str) -> str:
"""Adds a new prompt to the agent's knowledge base."""
try:
self.prompts.append(prompt)
return f"Prompt '{prompt}' added successfully."
except Exception as e:
raise PromptManagementError(f"Error adding prompt: {e}")
# --- Prompt Generation Functionality ---
def action_prompt(self, action: str) -> str:
"""Provides a prompt for a specific action."""
try:
if action == "SEARCH":
return "What do you want to search for?"
elif action == "CODEGEN":
return "Provide a code snippet to generate code from, or describe what you want the code to do."
elif action == "REFINE-CODE":
return "Provide the code to refine."
elif action == "TEST-CODE":
return "Provide the code to test."
elif action == "INTEGRATE-CODE":
return "Provide the file path and code snippet to integrate. For example: /path/to/your/file.py \"\"\"print('Hello, World!')\"\"\""
elif action == "TEST-APP":
return "Test the application."
elif action == "GENERATE-REPORT":
return "Generate a report based on the task history."
elif action == "WORKSPACE-EXPLORER":
return "Explore the current workspace."
elif action == "ADD_PROMPT":
return "Enter the new prompt to add."
elif action == "ACTION_PROMPT":
return "Enter the action to get a prompt for."
elif action == "COMPRESS_HISTORY_PROMPT":
return "Compress the task history."
elif action == "LOG_PROMPT":
return "Enter the event to log."
elif action == "LOG_RESPONSE":
return "Log the specified event."
elif action == "MODIFY_PROMPT":
return "Enter the prompt to modify."
elif action == "PREFIX":
return "Enter the text to add a prefix to."
elif action == "SEARCH_QUERY":
return "Enter the topic to generate a search query for."
elif action == "READ_PROMPT":
return "Enter the file path to read."
elif action == "TASK_PROMPT":
return "Enter the new task to start."
elif action == "UNDERSTAND_TEST_RESULTS_PROMPT":
return "Enter your question about the test results."
elif action == "EXECUTE_COMMAND":
return "Enter the command to execute."
elif action == "PYTHON_INTERPRET":
return "Enter the Python code to interpret."
elif action == "NLP":
return "Enter the text for NLP analysis."
else:
raise InvalidActionError("Please provide a valid action.")
except InvalidActionError as e:
raise e
# --- Prompt Generation Functionality ---
def compress_history_prompt(self) -> str:
"""Provides a prompt to compress the task history."""
return "Do you want to compress the task history?"
# --- Prompt Generation Functionality ---
def log_prompt(self) -> str:
"""Provides a prompt to log a specific event."""
return "What event do you want to log?"
# --- Logging Functionality ---
def log_response(self, event: str) -> str:
"""Logs the specified event."""
print(f"Event logged: {event}")
return "Event logged successfully."
# --- Prompt Modification Functionality ---
def modify_prompt(self, prompt: str) -> str:
"""Modifies an existing prompt."""
try:
# Find the prompt to modify
# Update the prompt
return f"Prompt '{prompt}' modified successfully."
except Exception as e:
raise PromptManagementError(f"Error modifying prompt: {e}")
# --- Prefix Functionality ---
def prefix(self, text: str) -> str:
"""Adds a prefix to the provided text."""
return f"PREFIX: {text}"
# --- Search Query Generation Functionality ---
def search_query(self, query: str) -> str:
"""Provides a search query for the specified topic."""
return f"Search query: {query}"
# --- File Reading Functionality ---
def read_prompt(self, file_path: str) -> str:
"""Provides a prompt to read the contents of a file."""
try:
with open(file_path, 'r') as f:
contents = f.read()
return contents
except FileNotFoundError:
raise InvalidInputError(f"Error: File not found: {file_path}")
except Exception as e:
raise InvalidInputError(f"Error reading file: {e}")
# --- Task Prompt Generation Functionality ---
def task_prompt(self) -> str:
"""Provides a prompt to start a new task."""
return "What task do you want to start?"
# --- Test Results Understanding Prompt Generation Functionality ---
def understand_test_results_prompt(self) -> str:
"""Provides a prompt to understand the test results."""
return "What do you want to know about the test results?"
# --- Command Execution Functionality ---
def execute_command(self, command: str) -> str:
"""Executes the provided command in the terminal."""
try:
process = subprocess.run(
command.split(), capture_output=True, text=True
)
return f"Command output:\n{process.stdout}"
except subprocess.CalledProcessError as e:
return f"Error executing command: {e}"
# --- Python Interpretation Functionality ---
def python_interpret(self, code: str) -> str:
"""Interprets the provided Python code."""
try:
exec(code)
return "Python code executed successfully."
except Exception as e:
return f"Error interpreting Python code: {e}"
# --- NLP Functionality ---
def nlp(self, text: str) -> str:
"""Performs NLP analysis on the provided text."""
try:
if not self.nlp_pipeline:
self.nlp_pipeline = pipeline(
"sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-5-lit"
) # Example NLP pipeline
analysis = self.nlp_pipeline(text)
return f"NLP Analysis: {analysis}"
except Exception as e:
return f"Error performing NLP analysis: {e}"
# --- Input Handling Functionality ---
def handle_input(self, input_str: str):
"""Handles user input and executes the corresponding action."""
try:
action, *args = input_str.split()
if action in self.tools:
if args:
try:
self.task_history.append(
{
"action": action,
"input": " ".join(args),
"output": self.tools[action](" ".join(args)),
}
)
print(
f"Action: {action}\nInput: {' '.join(args)}\nOutput: {self.tools[action](' '.join(args))}"
)
except Exception as e:
self.task_history.append(
{
"action": action,
"input": " ".join(args),
"output": f"Error: {e}",
}
)
print(
f"Action: {action}\nInput: {' '.join(args)}\nOutput: Error: {e}"
)
else:
try:
self.task_history.append(
{
"action": action,
"input": None,
"output": self.tools[action](),
}
)
print(
f"Action: {action}\nInput: None\nOutput: {self.tools[action]()}"
)
except Exception as e:
self.task_history.append(
{
"action": action,
"input": None,
"output": f"Error: {e}",
}
)
print(
f"Action: {action}\nInput: None\nOutput: Error: {e}"
)
else:
raise InvalidActionError(
"Invalid action. Please choose a valid action from the list of tools."
)
except (
InvalidActionError,
InvalidInputError,
CodeGenerationError,
CodeRefinementError,
CodeTestingError,
CodeIntegrationError,
AppTestingError,
WorkspaceExplorerError,
PromptManagementError,
SearchError,
) as e:
print(f"Error: {e}")
# --- Main Loop of the Agent ---
def run(self):
"""Runs the agent continuously, waiting for user input."""
while True:
input_str = input("Enter a command for the AI Agent: ")
self.handle_input(input_str)
# --- Streamlit Integration ---
if __name__ == "__main__":
agent = AIAgent()
st.set_page_config(
page_title="AI Agent",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
)
# --- Tabbed Navigation ---
tabs = st.tabs(["Agent Generation", "Chat App"])
# --- Agent Generation Tab ---
with tabs[0]:
st.title("AI Agent Generation")
st.sidebar.title("Agent Settings")
# --- Command Dropdown ---
command_options = [
"SEARCH",
"CODEGEN",
"REFINE-CODE",
"TEST-CODE",
"INTEGRATE-CODE",
"TEST-APP",
"GENERATE-REPORT",
"WORKSPACE-EXPLORER",
"ADD_PROMPT",
"ACTION_PROMPT",
"COMPRESS_HISTORY_PROMPT",
"LOG_PROMPT",
"LOG_RESPONSE",
"MODIFY_PROMPT",
"PREFIX",
"SEARCH_QUERY",
"READ_PROMPT",
"TASK_PROMPT",
"UNDERSTAND_TEST_RESULTS_PROMPT",
]
selected_command = st.sidebar.selectbox("Command", command_options)
# --- Model Dropdown ---
selected_model = st.sidebar.selectbox(
"Model",
agent.available_models,
index=agent.available_models.index(agent.selected_model),
)
agent.selected_model = selected_model
# --- Input Field ---
input_str = st.text_input(f"Enter input for {selected_command}:")
# --- Execute Command ---
if st.button("Execute"):
if input_str:
agent.handle_input(f"{selected_command} {input_str}")
st.write(f"Output: {agent.task_history[-1]['output']}")
# --- Task History ---
st.subheader("Task History")
for task in agent.task_history:
st.write(f"**Action:** {task['action']}")
st.write(f"**Input:** {task['input']}")
st.write(f"**Output:** {task['output']}")
# --- Workspace Explorer ---
st.subheader("Workspace Explorer")
with st.expander("Explore Workspace"):
try:
workspace_output = agent.workspace_explorer()
st.write(workspace_output)
except WorkspaceExplorerError as e:
st.error(f"Error exploring workspace: {e}")
# --- Chat App Tab ---
with tabs[1]:
st.title("Chat App")
# --- Chat History ---
chat_history = st.empty()
chat_history.text("Chat History:")
# --- Input Field ---
user_input = st.text_input("Enter your message:")
# --- Send Message ---
if st.button("Send"):
if user_input:
# --- Display User Message ---
chat_history.text(f"You: {user_input}")
# --- Process User Input ---
try:
# --- Extract Command and Arguments ---
action, *args = user_input.split()
if action in agent.tools:
if args:
output = agent.tools[action](" ".join(args))
else:
output = agent.tools[action]()
# --- Display Agent Response ---
chat_history.text(f"Agent: {output}")
else:
# --- Treat as regular chat message ---
output = agent.code_generation(user_input)
# --- Display Agent Response ---
chat_history.text(f"Agent: {output}")
except Exception as e:
# --- Display Error Message ---
chat_history.text(f"Agent: Error: {e}")
# --- Clear Input Field ---
user_input = ""
# --- Gradio Integration ---
def gradio_interface(input_text):
"""Gradio interface function."""
try:
agent.handle_input(input_text)
output = agent.task_history[-1]["output"] # Get the latest output
return output
except Exception as e:
return f"Error: {e}"
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(label="Enter Command"),
outputs=gr.Textbox(label="Output"),
title="AI Agent",
description="Interact with the AI Agent.",
)
iface.launch()