MistriDevLab / app.py
acecalisto3's picture
Update app.py
8f208cb verified
raw
history blame
9.99 kB
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient
from safe_search import safe_search
from i_search import google, i_search as i_s
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agents ---
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"DATA_SCIENCE",
"UI_UX_DESIGN",
]
# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought:
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
prompt = " "
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST] {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_llm(
prompt_template: str,
stop_tokens: List[str],
purpose: str,
**prompt_kwargs: Dict
) -> str:
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}")
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp))
return resp
def generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=f"Generating response as {agent_name}",
safe_search=safe_search,
) + sys_prompt + "\n" + prompt
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens)
return "".join(chunk.text for chunk in stream)
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
submit_button = gr.Button(value="Send")
with gr.Column(scale=1):
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
with gr.Tabs():
with gr.TabItem("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
with gr.TabItem("Code Editor"):
code_editor = gr.Code(label="Code Editor", language="python")
run_code_button = gr.Button(value="Run Code")
code_output = gr.Textbox(label="Code Output", lines=10)
with gr.TabItem("File Management"):
file_list = gr.Dropdown(label="Select File", choices=[], interactive=True)
file_content = gr.Textbox(label="File Content", lines=20)
save_file_button = gr.Button(value="Save File")
create_file_button = gr.Button(value="Create New File")
delete_file_button = gr.Button(value="Delete File")
history = gr.State([])
def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
prompt = format_prompt(message, history)
response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
history.append((message, response))
return history, history
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
def explore_project(project_path: str) -> str:
try:
tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
return tree
except Exception as e:
return f"Error exploring project: {e}"
explore_button.click(explore_project, inputs=[project_path], outputs=[project_output])
def run_code(code: str) -> str:
try:
exec_globals = {}
exec(code, exec_globals)
output = exec_globals.get('__builtins__', {}).get('print', print)
return str(output)
except Exception as e:
return f"Error running code: {e}"
run_code_button.click(run_code, inputs=[code_editor], outputs=[code_output])
def load_file_list(project_path: str) -> List[str]:
try:
return [f for f in os.listdir(project_path) if os.path.isfile(os.path.join(project_path, f))]
except Exception as e:
return [f"Error loading file list: {e}"]
def load_file_content(project_path: str, file_name: str) -> str:
try:
with open(os.path.join(project_path, file_name), 'r') as file:
return file.read()
except Exception as e:
return f"Error loading file content: {e}"
def save_file(project_path: str, file_name: str, content: str) -> str:
try:
with open(os.path.join(project_path, file_name), 'w') as file:
file.write(content)
return f"File {file_name} saved successfully."
except Exception as e:
return f"Error saving file: {e}"
def create_file(project_path: str, file_name: str) -> str:
try:
open(os.path.join(project_path, file_name), 'a').close()
return f"File {file_name} created successfully."
except Exception as e:
return f"Error creating file: {e}"
def delete_file(project_path: str, file_name: str) -> str:
try:
os.remove(os.path.join(project_path, file_name))
return f"File {file_name} deleted successfully."
except Exception as e:
return f"Error deleting file: {e}"
project_path.change(load_file_list, inputs=[project_path], outputs=[file_list])
file_list.change(load_file_content, inputs=[project_path, file_list], outputs=[file_content])
save_file_button.click(save_file, inputs=[project_path, file_list, file_content], outputs=[gr.Textbox()])
create_file_button.click(create_file, inputs=[project_path, gr.Textbox(label="New File Name")], outputs=[gr.Textbox()])
delete_file_button.click(delete_file, inputs=[project_path, file_list], outputs=[gr.Textbox()])
demo.launch()
if __name__ == "__main__":
main()