Spaces:
Running
Running
acecalisto3
commited on
Commit
•
c3b5b15
1
Parent(s):
a1da238
Update app.py
Browse files
app.py
CHANGED
@@ -9,25 +9,18 @@ import docker
|
|
9 |
from huggingface_hub import HfApi, create_repo
|
10 |
import importlib
|
11 |
import os
|
12 |
-
from huggingface_hub import HfApi, create_repo
|
13 |
from transformers import AutoModelForSequenceClassification, pipeline
|
14 |
import huggingface_cli
|
15 |
|
16 |
-
model = AutoModelForSequenceClassification.from_pretrained("EleutherAI/code-davinci-002")
|
17 |
-
codex_pipeline = pipeline("code-generation", model="EleutherAI/code-davinci-002")
|
18 |
-
|
19 |
-
hf_api = HfApi()
|
20 |
-
|
21 |
# Initialize Flask app
|
22 |
app = Flask(__name__)
|
23 |
-
app.config['SECRET_KEY'] = 'your-secret-key'
|
24 |
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db'
|
25 |
db = SQLAlchemy(app)
|
26 |
login_manager = LoginManager()
|
27 |
login_manager.init_app(app)
|
28 |
|
29 |
-
# User and Project models
|
30 |
-
|
31 |
class User(UserMixin, db.Model):
|
32 |
id = db.Column(db.Integer, primary_key=True)
|
33 |
username = db.Column(db.String(100), unique=True, nullable=False)
|
@@ -43,8 +36,7 @@ class Project(db.Model):
|
|
43 |
def load_user(user_id):
|
44 |
return User.query.get(int(user_id))
|
45 |
|
46 |
-
# Authentication routes
|
47 |
-
|
48 |
@app.route('/register', methods=['POST'])
|
49 |
def register():
|
50 |
data = request.get_json()
|
@@ -114,7 +106,6 @@ class PluginManager:
|
|
114 |
return list(self.plugins.keys())
|
115 |
|
116 |
# Example plugin
|
117 |
-
# save this as a .py file in your plugin directory
|
118 |
def register_plugin():
|
119 |
return ExamplePlugin()
|
120 |
|
@@ -127,6 +118,61 @@ class ExamplePlugin:
|
|
127 |
plugin_manager = PluginManager('./plugins')
|
128 |
plugin_manager.load_plugins()
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def main():
|
131 |
st.sidebar.title("AI-Guided Development")
|
132 |
app_mode = st.sidebar.selectbox("Choose the app mode",
|
@@ -225,7 +271,13 @@ def build_and_deploy_page():
|
|
225 |
@login_required
|
226 |
def ai_assistant_page():
|
227 |
st.header("AI Assistant")
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
@login_required
|
231 |
def plugins_page():
|
@@ -293,82 +345,6 @@ def run_docker_container(image_name, port):
|
|
293 |
container = client.containers.run(image_name, detach=True, ports={f'{port}/tcp': port})
|
294 |
return container
|
295 |
|
296 |
-
def generate_app(user_idea, project_name):
|
297 |
-
# Extract key information from the user idea
|
298 |
-
summary = nlp_pipeline(user_idea, max_length=50, min_length=10)[0]["summary_text"]
|
299 |
-
|
300 |
-
# Create project directory if it doesn't exist
|
301 |
-
project_path = create_project(project_name)
|
302 |
-
|
303 |
-
# Generate code using Codex
|
304 |
-
prompt = f"""Create a simple Streamlit app for the project named '{project_name}'. The app should display the following summary: '{summary}'."""
|
305 |
-
generated_code = codex_pipeline(prompt)[0]['generated_text']
|
306 |
-
|
307 |
-
# Save the generated code to a file in the project directory
|
308 |
-
with open(os.path.join(project_path, "app.py"), "w") as f:
|
309 |
-
f"""write(generated_code)"""
|
310 |
-
|
311 |
-
# Deploy the app to Hugging Face Spaces
|
312 |
-
deploy_app_to_hf_spaces(project_name, token, generated_code)
|
313 |
-
|
314 |
-
return generated_code, project_path
|
315 |
-
|
316 |
-
def deploy_app_to_hf_spaces(project_name, token, generated_code):
|
317 |
-
repo_name = f"""hf-{project_name}"""
|
318 |
-
repo_id = hf_api.changelog.get_repo_id(repo_name)
|
319 |
-
|
320 |
-
if not repo_id:
|
321 |
-
create_repo = huggingface_cli.create_repo(repo_name, "public", "Streamlit App", token)
|
322 |
-
repo_id = create_repo["repo_id"]
|
323 |
-
|
324 |
-
# Save the generated code to a temporary file
|
325 |
-
|
326 |
-
temp_file = "temp_code.py"
|
327 |
-
with open(temp_file, "w") as f:
|
328 |
-
f"""write(generated_code)"""
|
329 |
-
|
330 |
-
# Upload the file to Hugging Face Spaces
|
331 |
-
api.upload_files(repo_id, [temp_file], token)
|
332 |
-
|
333 |
-
# Delete the temporary file
|
334 |
-
os.remove(temp_file)
|
335 |
-
|
336 |
-
def launch_chatapp(project_path):
|
337 |
-
if st.button("Launch ChatApp"):
|
338 |
-
st.write("Launching ChatApp...")
|
339 |
-
os.chdir(project_path)
|
340 |
-
subprocess.run(["python", "app.py"])
|
341 |
-
st.write("ChatApp launched successfully!")
|
342 |
-
|
343 |
-
def generate_app(user_idea, project_name):
|
344 |
-
# Extract key information from the user idea
|
345 |
-
summary = nlp_pipeline(user_idea, max_length=50, min_length=10)[0]["summary_text"]
|
346 |
-
|
347 |
-
# Create project directory if it doesn't exist
|
348 |
-
project_path = create_project(project_name)
|
349 |
-
|
350 |
-
# Generate code using Codex
|
351 |
-
prompt = f"Create a simple Streamlit app for the project named '{project_name}'. The app should display the following summary: '{summary}'."
|
352 |
-
generated_code = codex_pipeline(prompt)[0]['generated_text']
|
353 |
-
|
354 |
-
# Save the generated code to a file in the project directory
|
355 |
-
with open(os.path.join(project_path, "app.py"), "w") as f:
|
356 |
-
f"""write(generated_code)"""
|
357 |
-
|
358 |
-
# Upload the file to Hugging Face Spaces
|
359 |
-
api = HfApi()
|
360 |
-
repo_id = create_repo(api, project_name)["repo_id"]
|
361 |
-
temp_file = "temp_code.py"
|
362 |
-
with open(temp_file, "w") as f:
|
363 |
-
f"""write(generated_code)"""
|
364 |
-
api.upload_files(repo_id, [temp_file], api.api_key)
|
365 |
-
|
366 |
-
# Delete the temporary file
|
367 |
-
os.remove(temp_file)
|
368 |
-
|
369 |
-
# Launch the app
|
370 |
-
launch_chatapp(project_path)
|
371 |
-
|
372 |
if __name__ == "__main__":
|
373 |
db.create_all() # Create the database tables if they don't exist
|
374 |
main()
|
|
|
9 |
from huggingface_hub import HfApi, create_repo
|
10 |
import importlib
|
11 |
import os
|
|
|
12 |
from transformers import AutoModelForSequenceClassification, pipeline
|
13 |
import huggingface_cli
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
# Initialize Flask app
|
16 |
app = Flask(__name__)
|
17 |
+
app.config['SECRET_KEY'] = 'your-secret-key' # Replace with a strong secret key
|
18 |
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db'
|
19 |
db = SQLAlchemy(app)
|
20 |
login_manager = LoginManager()
|
21 |
login_manager.init_app(app)
|
22 |
|
23 |
+
# User and Project models
|
|
|
24 |
class User(UserMixin, db.Model):
|
25 |
id = db.Column(db.Integer, primary_key=True)
|
26 |
username = db.Column(db.String(100), unique=True, nullable=False)
|
|
|
36 |
def load_user(user_id):
|
37 |
return User.query.get(int(user_id))
|
38 |
|
39 |
+
# Authentication routes
|
|
|
40 |
@app.route('/register', methods=['POST'])
|
41 |
def register():
|
42 |
data = request.get_json()
|
|
|
106 |
return list(self.plugins.keys())
|
107 |
|
108 |
# Example plugin
|
|
|
109 |
def register_plugin():
|
110 |
return ExamplePlugin()
|
111 |
|
|
|
118 |
plugin_manager = PluginManager('./plugins')
|
119 |
plugin_manager.load_plugins()
|
120 |
|
121 |
+
# AI Assistant
|
122 |
+
model = AutoModelForSequenceClassification.from_pretrained("EleutherAI/code-davinci-002")
|
123 |
+
codex_pipeline = pipeline("code-generation", model=model)
|
124 |
+
|
125 |
+
hf_api = HfApi()
|
126 |
+
|
127 |
+
def generate_app(user_idea, project_name):
|
128 |
+
# Extract key information from the user idea
|
129 |
+
# (You might want to use a more sophisticated NLP pipeline here)
|
130 |
+
summary = user_idea # For now, just use the user's input
|
131 |
+
|
132 |
+
# Create project directory if it doesn't exist
|
133 |
+
project_path = create_project(project_name)
|
134 |
+
|
135 |
+
# Generate code using Codex
|
136 |
+
prompt = f"""Create a simple Streamlit app for the project named '{project_name}'. The app should display the following summary: '{summary}'."""
|
137 |
+
generated_code = codex_pipeline(prompt)[0]['generated_text']
|
138 |
+
|
139 |
+
# Save the generated code to a file in the project directory
|
140 |
+
with open(os.path.join(project_path, "app.py"), "w") as f:
|
141 |
+
f.write(generated_code)
|
142 |
+
|
143 |
+
# Deploy the app to Hugging Face Spaces
|
144 |
+
deploy_app_to_hf_spaces(project_name, generated_code)
|
145 |
+
|
146 |
+
return generated_code, project_path
|
147 |
+
|
148 |
+
def deploy_app_to_hf_spaces(project_name, generated_code):
|
149 |
+
repo_name = f"hf-{project_name}"
|
150 |
+
repo_id = hf_api.changelog.get_repo_id(repo_name)
|
151 |
+
|
152 |
+
if not repo_id:
|
153 |
+
create_repo(hf_api, repo_name, "public", "Streamlit App")
|
154 |
+
repo_id = hf_api.changelog.get_repo_id(repo_name)
|
155 |
+
|
156 |
+
# Save the generated code to a temporary file
|
157 |
+
temp_file = "temp_code.py"
|
158 |
+
with open(temp_file, "w") as f:
|
159 |
+
f.write(generated_code)
|
160 |
+
|
161 |
+
# Upload the file to Hugging Face Spaces
|
162 |
+
hf_api.upload_files(repo_id, [temp_file], hf_api.api_key)
|
163 |
+
|
164 |
+
# Delete the temporary file
|
165 |
+
os.remove(temp_file)
|
166 |
+
|
167 |
+
# Print success message
|
168 |
+
st.write(f"App deployed successfully to Hugging Face Spaces: https://huggingface.co/spaces/{repo_name}")
|
169 |
+
|
170 |
+
def create_project(project_name):
|
171 |
+
project_path = os.path.join(os.getcwd(), project_name)
|
172 |
+
if not os.path.exists(project_path):
|
173 |
+
os.makedirs(project_path)
|
174 |
+
return project_path
|
175 |
+
|
176 |
def main():
|
177 |
st.sidebar.title("AI-Guided Development")
|
178 |
app_mode = st.sidebar.selectbox("Choose the app mode",
|
|
|
271 |
@login_required
|
272 |
def ai_assistant_page():
|
273 |
st.header("AI Assistant")
|
274 |
+
user_idea = st.text_area("Describe your app idea:")
|
275 |
+
project_name = st.text_input("Enter project name:")
|
276 |
+
|
277 |
+
if st.button("Generate App"):
|
278 |
+
generated_code, project_path = generate_app(user_idea, project_name)
|
279 |
+
st.code(generated_code)
|
280 |
+
st.write(f"Project directory: {project_path}")
|
281 |
|
282 |
@login_required
|
283 |
def plugins_page():
|
|
|
345 |
container = client.containers.run(image_name, detach=True, ports={f'{port}/tcp': port})
|
346 |
return container
|
347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
if __name__ == "__main__":
|
349 |
db.create_all() # Create the database tables if they don't exist
|
350 |
main()
|