acecalisto3 commited on
Commit
643e2e2
·
verified ·
1 Parent(s): 8bcaecb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -24
app.py CHANGED
@@ -5,10 +5,24 @@ import base64
5
  import json
6
  from io import StringIO
7
  from typing import Dict, List
8
-
9
  import streamlit as st
10
  from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
11
  from pylint import lint
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Replace st.secrets with os.environ
14
  hf_token = os.environ.get("huggingface_token")
@@ -17,11 +31,6 @@ if not hf_token:
17
  st.error("Hugging Face API key not found. Please set the HUGGINGFACE_API_KEY environment variable.")
18
  st.stop()
19
 
20
- # Rest of your code here
21
- st.write("Hugging Face API key successfully loaded!")
22
-
23
- # Rest of your code here
24
- st.write("Hugging Face API key successfully loaded!")
25
  # Global state to manage communication between Tool Box and Workspace Chat App
26
  if "chat_history" not in st.session_state:
27
  st.session_state.chat_history = []
@@ -31,13 +40,13 @@ if "workspace_projects" not in st.session_state:
31
  st.session_state.workspace_projects = {}
32
 
33
  # Load pre-trained RAG retriever
34
- rag_retriever = pipeline("text-generation", model="facebook/rag-token-base")
35
 
36
  # Load pre-trained chat model
37
- chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
38
 
39
  # Load tokenizer
40
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
41
 
42
  def process_input(user_input: str) -> str:
43
  # Input pipeline: Tokenize and preprocess user input
@@ -90,7 +99,6 @@ class AIAgent:
90
  # - Check if the user has requested to generate code
91
  # - Check if the user has requested to translate code
92
  # - Check if the user has requested to summarize text
93
- # - Check if the user has requested to analyze sentiment
94
 
95
  # Generate a response based on the analysis
96
  next_step = "Based on the current state, the next logical step is to implement the main application logic."
@@ -170,7 +178,7 @@ def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
170
  if agent_prompt is None:
171
  return f"Agent {agent_name} not found."
172
 
173
- model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"
174
  try:
175
  generator = pipeline("text-generation", model=model_name)
176
  generator.tokenizer.pad_token = generator.tokenizer.eos_token
@@ -214,16 +222,12 @@ def summarize_text(text: str) -> str:
214
  summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
215
  return summary[0]['summary_text']
216
 
217
- def sentiment_analysis(text: str) -> str:
218
- analyzer = pipeline("sentiment-analysis")
219
- result = analyzer(text)
220
- return result[0]['label']
221
 
222
  def translate_code(code: str, source_language: str, target_language: str) -> str:
223
  # Use a Hugging Face translation model instead of OpenAI
224
  # Example: English to Spanish
225
  translator = pipeline(
226
- "translation", model="bartowski/Codestral-22B-v0.1-GGUF")
227
  translated_code = translator(code, target_lang=target_language)[0]['translation_text']
228
  return translated_code
229
 
@@ -239,7 +243,7 @@ def generate_code(code_idea: str, model_name: str) -> str:
239
  def chat_interface(input_text: str) -> str:
240
  """Handles general chat interactions with the user."""
241
  # Use a Hugging Face chatbot model or your own logic
242
- chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
243
  response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
244
  return response
245
 
@@ -344,13 +348,6 @@ elif app_mode == "Tool Box":
344
  summary = summarize_text(text_to_summarize)
345
  st.write(f"Summary: {summary}")
346
 
347
- # Sentiment Analysis Tool
348
- st.subheader("Sentiment Analysis")
349
- sentiment_text = st.text_area("Enter text for sentiment analysis:")
350
- if st.button("Analyze Sentiment"):
351
- sentiment = sentiment_analysis(sentiment_text)
352
- st.write(f"Sentiment: {sentiment}")
353
-
354
  # Text Translation Tool (Code Translation)
355
  st.subheader("Translate Code")
356
  code_to_translate = st.text_area("Enter code to translate:")
 
5
  import json
6
  from io import StringIO
7
  from typing import Dict, List
 
8
  import streamlit as st
9
  from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
10
  from pylint import lint
11
+ from huggingface_hub import InferenceClient
12
+ import gradio as gr
13
+ import random
14
+ import prompts
15
+ client = InferenceClient(
16
+ "mistralai/Mixtral-8x7B-Instruct-v0.1"
17
+ )
18
+
19
+ def format_prompt(message, history):
20
+ prompt = "<s>"
21
+ for user_prompt, bot_response in history:
22
+ prompt += f"[INST] {user_prompt} [/INST]"
23
+ prompt += f" {bot_response}</s> "
24
+ prompt += f"[INST] {message} [/INST]"
25
+ return prompt
26
 
27
  # Replace st.secrets with os.environ
28
  hf_token = os.environ.get("huggingface_token")
 
31
  st.error("Hugging Face API key not found. Please set the HUGGINGFACE_API_KEY environment variable.")
32
  st.stop()
33
 
 
 
 
 
 
34
  # Global state to manage communication between Tool Box and Workspace Chat App
35
  if "chat_history" not in st.session_state:
36
  st.session_state.chat_history = []
 
40
  st.session_state.workspace_projects = {}
41
 
42
  # Load pre-trained RAG retriever
43
+ rag_retriever = pipeline("text-generation", model="mistralai/Mixtral-8x7B-v0.1")
44
 
45
  # Load pre-trained chat model
46
+ chat_model = AutoModelForSeq2SeqLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
47
 
48
  # Load tokenizer
49
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
50
 
51
  def process_input(user_input: str) -> str:
52
  # Input pipeline: Tokenize and preprocess user input
 
99
  # - Check if the user has requested to generate code
100
  # - Check if the user has requested to translate code
101
  # - Check if the user has requested to summarize text
 
102
 
103
  # Generate a response based on the analysis
104
  next_step = "Based on the current state, the next logical step is to implement the main application logic."
 
178
  if agent_prompt is None:
179
  return f"Agent {agent_name} not found."
180
 
181
+ model_name = ""
182
  try:
183
  generator = pipeline("text-generation", model=model_name)
184
  generator.tokenizer.pad_token = generator.tokenizer.eos_token
 
222
  summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
223
  return summary[0]['summary_text']
224
 
 
 
 
 
225
 
226
  def translate_code(code: str, source_language: str, target_language: str) -> str:
227
  # Use a Hugging Face translation model instead of OpenAI
228
  # Example: English to Spanish
229
  translator = pipeline(
230
+ "translation", model="mistralai/Mixtral-8x7B-Instruct-v0.1")
231
  translated_code = translator(code, target_lang=target_language)[0]['translation_text']
232
  return translated_code
233
 
 
243
  def chat_interface(input_text: str) -> str:
244
  """Handles general chat interactions with the user."""
245
  # Use a Hugging Face chatbot model or your own logic
246
+ chatbot = pipeline("text-generation", model="mistralai/Mixtral-8x7B-Instruct-v0.1")
247
  response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
248
  return response
249
 
 
348
  summary = summarize_text(text_to_summarize)
349
  st.write(f"Summary: {summary}")
350
 
 
 
 
 
 
 
 
351
  # Text Translation Tool (Code Translation)
352
  st.subheader("Translate Code")
353
  code_to_translate = st.text_area("Enter code to translate:")