acecalisto3 commited on
Commit
5bdcc75
1 Parent(s): 52cf5c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -9,7 +9,7 @@ import docker
9
  from huggingface_hub import HfApi, create_repo
10
  import importlib
11
  import os
12
- from transformers import AutoModelForSequenceClassification, pipeline, AutoTokenizer
13
 
14
  # Initialize Flask app
15
  app = Flask(__name__)
@@ -121,15 +121,12 @@ plugin_manager.load_plugins()
121
  tokenizer = AutoTokenizer.from_pretrained("microsoft/CodeGPT-small-py", clean_up_tokenization_spaces=True)
122
 
123
  # Initialize the model
124
- model = AutoModelForSequenceClassification.from_pretrained("microsoft/CodeGPT-small-py") # Use a public model
125
 
126
  # Initialize the pipeline
127
  code_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
128
 
129
  # AI Assistant
130
- model = AutoModelForSequenceClassification.from_pretrained("microsoft/CodeGPT-small-py")
131
- codex_pipeline = pipeline("text-generation", model=model)
132
-
133
  hf_api = HfApi()
134
 
135
  def generate_app(user_idea, project_name):
@@ -142,7 +139,7 @@ def generate_app(user_idea, project_name):
142
 
143
  # Generate code using Codex
144
  prompt = f"""Create a simple Streamlit app for the project named '{project_name}'. The app should display the following summary: '{summary}'."""
145
- generated_code = codex_pipeline(prompt, max_length=516)[0]['generated_text']
146
 
147
  # Save the generated code to a file in the project directory
148
  with open(os.path.join(project_path, "app.py"), "w") as f:
 
9
  from huggingface_hub import HfApi, create_repo
10
  import importlib
11
  import os
12
+ from transformers import AutoModelForCausalLM, pipeline, AutoTokenizer
13
 
14
  # Initialize Flask app
15
  app = Flask(__name__)
 
121
  tokenizer = AutoTokenizer.from_pretrained("microsoft/CodeGPT-small-py", clean_up_tokenization_spaces=True)
122
 
123
  # Initialize the model
124
+ model = AutoModelForCausalLM.from_pretrained("microsoft/CodeGPT-small-py") # Use a public model
125
 
126
  # Initialize the pipeline
127
  code_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
128
 
129
  # AI Assistant
 
 
 
130
  hf_api = HfApi()
131
 
132
  def generate_app(user_idea, project_name):
 
139
 
140
  # Generate code using Codex
141
  prompt = f"""Create a simple Streamlit app for the project named '{project_name}'. The app should display the following summary: '{summary}'."""
142
+ generated_code = code_generator(prompt, max_length=516)[0]['generated_text']
143
 
144
  # Save the generated code to a file in the project directory
145
  with open(os.path.join(project_path, "app.py"), "w") as f: