DevToolKit / app.py
acecalisto3's picture
Update app.py
a3f74af verified
raw
history blame
11.3 kB
import streamlit as st
import os
import subprocess
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import epylint as lint
PROJECT_ROOT = "projects"
# Define functions for each feature
# 1. Chat Interface
def chat_interface(input_text):
"""Handles user input in the chat interface.
Args:
input_text: User's input text.
Returns:
The chatbot's response.
"""
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = 900
input_ids = tokenizer.encode(input_text, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
# Generate chatbot response
outputs = model.generate(
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# 2. Terminal
def terminal_interface(command, project_name=None):
"""Executes commands in the terminal.
Args:
command: User's command.
project_name: Name of the project workspace to add installed packages.
Returns:
The terminal output.
"""
# Execute command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
output = process.stdout
# If the command is to install a package, update the workspace
if "install" in command and project_name:
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
with open(requirements_path, "a") as req_file:
package_name = command.split()[-1]
req_file.write(f"{package_name}\n")
except Exception as e:
output = f"Error: {e}"
return output
# 3. Code Editor
def code_editor_interface(code):
"""Provides code completion, formatting, and linting in the code editor.
Args:
code: User's code.
Returns:
Formatted and linted code.
"""
# Format code using black
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.InvalidInput:
formatted_code = code # Keep original code if formatting fails
# Lint code using pylint
try:
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
lint_message = pylint_stdout.getvalue()
except Exception as e:
lint_message = f"Pylint error: {e}"
return formatted_code, lint_message
# 4. Workspace
def workspace_interface(project_name):
"""Manages projects, files, and resources in the workspace.
Args:
project_name: Name of the new project.
Returns:
Project creation status.
"""
project_path = os.path.join(PROJECT_ROOT, project_name)
# Create project directory
try:
os.makedirs(project_path)
requirements_path = os.path.join(project_path, "requirements.txt")
with open(requirements_path, "w") as req_file:
req_file.write("") # Initialize an empty requirements.txt file
status = f'Project "{project_name}" created successfully.'
except FileExistsError:
status = f'Project "{project_name}" already exists.'
return status
def add_code_to_workspace(project_name, code, file_name):
"""Adds selected code files to the workspace.
Args:
project_name: Name of the project.
code: Code to be added.
file_name: Name of the file to be created.
Returns:
File creation status.
"""
project_path = os.path.join(PROJECT_ROOT, project_name)
file_path = os.path.join(project_path, file_name)
try:
with open(file_path, "w") as code_file:
code_file.write(code)
status = f'File "{file_name}" added to project "{project_name}" successfully.'
except Exception as e:
status = f"Error: {e}"
return status
# 5. AI-Infused Tools
# Define custom AI-powered tools using Hugging Face models
# Example: Text summarization tool
def summarize_text(text):
"""Summarizes a given text using a Hugging Face model.
Args:
text: Text to be summarized.
Returns:
Summarized text.
"""
# Load the summarization model
model_name = "facebook/bart-large-cnn"
try:
summarizer = pipeline("summarization", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = 1024
inputs = text
if len(text) > max_input_length:
inputs = text[:max_input_length]
# Generate summary
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
"summary_text"
]
return summary
# Example: Sentiment analysis tool
def sentiment_analysis(text):
"""Performs sentiment analysis on a given text using a Hugging Face model.
Args:
text: Text to be analyzed.
Returns:
Sentiment analysis result.
"""
# Load the sentiment analysis model
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
try:
analyzer = pipeline("sentiment-analysis", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Perform sentiment analysis
result = analyzer(text)[0]
return result
# Example: Text translation tool
def translate_text(text, target_language="fr"):
"""Translates a given text to the target language using a Hugging Face model.
Args:
text: Text to be translated.
target_language: The language to translate the text to.
Returns:
Translated text.
"""
# Load the translation model
model_name = f"Helsinki-NLP/opus-mt-en-{target_language}"
try:
translator = pipeline("translation", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Translate text
translated_text = translator(text)[0]["translation_text"]
return translated_text
# 6. Code Generation
def generate_code(idea):
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
Args:
idea: The idea for the code to be generated.
Returns:
The generated code as a string.
"""
# Load the code generation model
model_name = "EleutherAI/gpt-neo-2.7B"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Generate the code
input_text = f"""
# Idea: {idea}
# Code:
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_sequences = model.generate(
input_ids=input_ids,
max_length=1024,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7, # Adjust temperature for creativity
top_k=50, # Adjust top_k for diversity
)
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# Remove the prompt and formatting
generated_code = generated_code.split("\n# Code:")[1].strip()
return generated_code
# Streamlit App
st.title("CodeCraft: Your AI-Powered Development Toolkit")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["Tool Box", "Workspace Chat App"])
if app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface(chat_input)
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.code(terminal_output, language="bash")
# Code Editor Interface
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Text Summarization Tool
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Sentiment Analysis Tool
st.subheader("Sentiment Analysis")
sentiment_text = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(sentiment_text)
st.write(f"Sentiment: {sentiment}")
# Text Translation Tool
st.subheader("Translate Text")
translation_text = st.text_area("Enter text to translate:")
target_language = st.text_input("Enter target language code (e.g., 'fr' for French):")
if st.button("Translate"):
translated_text = translate_text(translation_text, target_language)
st.write(f"Translated Text: {translated_text}")
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Project Workspace Creation
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# Add Code to Workspace
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# Terminal Interface with Project Context
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# Chat Interface for Guidance
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.write(f"CodeCraft: {chat_response}")