acecalisto3 commited on
Commit
e3abedf
·
verified ·
1 Parent(s): 2aa01ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +222 -99
app.py CHANGED
@@ -1,101 +1,224 @@
 
 
 
 
 
 
1
  import gradio as gr
2
- from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
3
- from typing import List, Dict, Any
4
-
5
- # --- Agent Definitions ---
6
-
7
- class Agent:
8
- def __init__(self, name: str, role: str, skills: List[str], model_name: str = None):
9
- self.name = name
10
- self.role = role
11
- self.skills = skills
12
- self.model = None
13
- if model_name:
14
- self.load_model(model_name)
15
-
16
- def load_model(self, model_name: str):
17
- self.model = pipeline(task="text-classification", model=model_name)
18
-
19
- def handle_task(self, task: str) -> str:
20
- # Placeholder for task handling logic
21
- # This is where each agent will implement its specific behavior
22
- return f"Agent {self.name} received task: {task}"
23
-
24
- class AgentCluster:
25
- def __init__(self, agents: List[Agent]):
26
- self.agents = agents
27
- self.task_queue = []
28
-
29
- def add_task(self, task: str):
30
- self.task_queue.append(task)
31
-
32
- def process_tasks(self):
33
- for task in self.task_queue:
34
- # Assign task to the most suitable agent based on skills
35
- best_agent = self.find_best_agent(task)
36
- if best_agent:
37
- result = best_agent.handle_task(task)
38
- print(f"Agent {best_agent.name} completed task: {task} - Result: {result}")
39
- else:
40
- print(f"No suitable agent found for task: {task}")
41
- self.task_queue = []
42
-
43
- def find_best_agent(self, task: str) -> Agent:
44
- # Placeholder for agent selection logic
45
- # This is where the cluster will determine which agent is best for a given task
46
- return self.agents[0] # For now, just return the first agent
47
-
48
- # --- Agent Clusters for Different Web Apps ---
49
-
50
- # Agent Cluster for a Code Review Tool
51
- code_review_agents = AgentCluster([
52
- Agent("CodeAnalyzer", "Code Reviewer", ["Python", "JavaScript", "C++"], "distilbert-base-uncased-finetuned-mrpc"),
53
- Agent("StyleChecker", "Code Stylist", ["Code Style", "Readability", "Best Practices"], "google/flan-t5-base"),
54
- Agent("SecurityScanner", "Security Expert", ["Vulnerability Detection", "Security Best Practices"], "google/flan-t5-base"),
55
- ])
56
-
57
- # Agent Cluster for a Project Management Tool
58
- project_management_agents = AgentCluster([
59
- Agent("TaskManager", "Project Manager", ["Task Management", "Prioritization", "Deadline Tracking"], "google/flan-t5-base"),
60
- Agent("ResourceAllocator", "Resource Manager", ["Resource Allocation", "Team Management", "Project Planning"], "google/flan-t5-base"),
61
- Agent("ProgressTracker", "Progress Monitor", ["Progress Tracking", "Reporting", "Issue Resolution"], "google/flan-t5-base"),
62
- ])
63
-
64
- # Agent Cluster for a Documentation Generator
65
- documentation_agents = AgentCluster([
66
- Agent("DocWriter", "Documentation Writer", ["Technical Writing", "API Documentation", "User Guides"], "google/flan-t5-base"),
67
- Agent("CodeDocumenter", "Code Commenter", ["Code Documentation", "Code Explanation", "Code Readability"], "google/flan-t5-base"),
68
- Agent("ContentOrganizer", "Content Manager", ["Content Structure", "Information Architecture", "Content Organization"], "google/flan-t5-base"),
69
- ])
70
-
71
- # --- Web App Logic ---
72
-
73
- def process_input(input_text: str, selected_cluster: str):
74
- """Processes user input and assigns tasks to the appropriate agent cluster."""
75
- if selected_cluster == "Code Review":
76
- cluster = code_review_agents
77
- elif selected_cluster == "Project Management":
78
- cluster = project_management_agents
79
- elif selected_cluster == "Documentation Generation":
80
- cluster = documentation_agents
81
  else:
82
- return "Please select a valid agent cluster."
83
-
84
- cluster.add_task(input_text)
85
- cluster.process_tasks()
86
- return "Task processed successfully!"
87
-
88
- # --- Gradio Interface ---
89
-
90
- with gr.Blocks() as demo:
91
- gr.Markdown("## Agent-Powered Development Automation")
92
- input_text = gr.Textbox(label="Enter your development task:")
93
- selected_cluster = gr.Radio(
94
- label="Select Agent Cluster", choices=["Code Review", "Project Management", "Documentation Generation"]
95
- )
96
- submit_button = gr.Button("Submit")
97
- output_text = gr.Textbox(label="Output")
98
-
99
- submit_button.click(process_input, inputs=[input_text, selected_cluster], outputs=output_text)
100
-
101
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ import random
4
+ import json
5
+ from datetime import datetime
6
+ from huggingface_hub import InferenceClient, cached_download, hf_hub_url
7
  import gradio as gr
8
+ from safe_search import safe_search
9
+ from i_search import google, i_search as i_s
10
+ from agent import (
11
+ ACTION_PROMPT, ADD_PROMPT, COMPRESS_HISTORY_PROMPT, LOG_PROMPT,
12
+ LOG_RESPONSE, MODIFY_PROMPT, PRE_PREFIX, SEARCH_QUERY, READ_PROMPT,
13
+ TASK_PROMPT, UNDERSTAND_TEST_RESULTS_PROMPT
14
+ )
15
+ from utils import parse_action, parse_file_content, read_python_module_structure
16
+
17
+ # Global Variables for App State
18
+ app_state = {"components": []}
19
+ terminal_history = ""
20
+
21
+ # Component Library
22
+ components_registry = {
23
+ "Button": {
24
+ "properties": {"label": "Click Me", "onclick": ""},
25
+ "description": "A clickable button",
26
+ "code_snippet": 'gr.Button(value="{label}", variant="primary")',
27
+ },
28
+ "Text Input": {
29
+ "properties": {"value": "", "placeholder": "Enter text"},
30
+ "description": "A field for entering text",
31
+ "code_snippet": 'gr.Textbox(label="{placeholder}")',
32
+ },
33
+ "Image": {
34
+ "properties": {"src": "#", "alt": "Image"},
35
+ "description": "Displays an image",
36
+ "code_snippet": 'gr.Image(label="{alt}")',
37
+ },
38
+ "Dropdown": {
39
+ "properties": {"choices": ["Option 1", "Option 2"], "value": ""},
40
+ "description": "A dropdown menu for selecting options",
41
+ "code_snippet": 'gr.Dropdown(choices={choices}, label="Dropdown")',
42
+ },
43
+ # Add more components here...
44
+ }
45
+
46
+ # NLP Model (Example using Hugging Face)
47
+ nlp_model_names = [
48
+ "google/flan-t5-small",
49
+ "Qwen/CodeQwen1.5-7B-Chat-GGUF",
50
+ "bartowski/Codestral-22B-v0.1-GGUF",
51
+ "bartowski/AutoCoder-GGUF"
52
+ ]
53
+ nlp_models = []
54
+
55
+ for nlp_model_name in nlp_model_names:
56
+ try:
57
+ cached_download(hf_hub_url(nlp_model_name, revision="main"))
58
+ nlp_models.append(InferenceClient(nlp_model_name))
59
+ except:
60
+ nlp_models.append(None)
61
+
62
+ # Function to get NLP model response
63
+ def get_nlp_response(input_text, model_index):
64
+ if nlp_models[model_index]:
65
+ response = nlp_models[model_index].text_generation(input_text)
66
+ return response.generated_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  else:
68
+ return "NLP model not available."
69
+
70
+ # Component Class
71
+ class Component:
72
+ def __init__(self, type, properties=None, id=None):
73
+ self.id = id or random.randint(1000, 9999)
74
+ self.type = type
75
+ self.properties = properties or components_registry[type]["properties"].copy()
76
+
77
+ def to_dict(self):
78
+ return {
79
+ "id": self.id,
80
+ "type": self.type,
81
+ "properties": self.properties,
82
+ }
83
+
84
+ def render(self):
85
+ # Properly format choices for Dropdown
86
+ if self.type == "Dropdown":
87
+ self.properties["choices"] = (
88
+ str(self.properties["choices"])
89
+ .replace("[", "")
90
+ .replace("]", "")
91
+ .replace("'", "")
92
+ )
93
+ return components_registry[self.type]["code_snippet"].format(**self.properties)
94
+
95
+ # Function to update the app canvas (for preview)
96
+ def update_app_canvas():
97
+ components_html = "".join([
98
+ f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>"
99
+ for component in app_state["components"]
100
+ ])
101
+ return components_html
102
+
103
+ # Function to handle component addition
104
+ def add_component(component_type):
105
+ if component_type in components_registry:
106
+ new_component = Component(component_type)
107
+ app_state["components"].append(new_component.to_dict())
108
+ return update_app_canvas(), f"System: Added component: {component_type}\n"
109
+ else:
110
+ return None, f"Error: Invalid component type: {component_type}\n"
111
+
112
+ # Function to handle terminal input
113
+ def run_terminal_command(command, history):
114
+ global terminal_history
115
+ output = ""
116
+ try:
117
+ # Basic command parsing (expand with NLP)
118
+ if command.startswith("add "):
119
+ component_type = command.split("add ", 1)[1].strip()
120
+ _, output = add_component(component_type)
121
+ elif command.startswith("set "):
122
+ _, output = set_component_property(command)
123
+ elif command.startswith("search "):
124
+ search_query = command.split("search ", 1)[1].strip()
125
+ output = i_s(search_query)
126
+ elif command.startswith("deploy "):
127
+ app_name = command.split("deploy ", 1)[1].strip()
128
+ output = deploy_to_huggingface(app_name)
129
+ else:
130
+ # Attempt to execute command as Python code
131
+ try:
132
+ result = subprocess.check_output(
133
+ command, shell=True, stderr=subprocess.STDOUT, text=True
134
+ )
135
+ output = result
136
+ except Exception as e:
137
+ output = f"Error executing Python code: {str(e)}"
138
+ except Exception as e:
139
+ output = f"Error: {str(e)}"
140
+ finally:
141
+ terminal_history += f"User: {command}\n{output}\n"
142
+ return terminal_history
143
+
144
+ def set_component_property(command):
145
+ try:
146
+ # Improved 'set' command parsing
147
+ set_parts = command.split(" ", 2)[1:]
148
+ if len(set_parts) != 2:
149
+ raise ValueError("Invalid 'set' command format.")
150
+ component_id = int(set_parts[0]) # Use component ID
151
+ property_name, property_value = set_parts[1].split("=", 1)
152
+ # Find component by ID
153
+ component_found = False
154
+ for component in app_state["components"]:
155
+ if component["id"] == component_id:
156
+ if property_name in component["properties"]:
157
+ component["properties"][property_name.strip()] = property_value.strip()
158
+ component_found = True
159
+ return update_app_canvas(), f"System: Property '{property_name}' set to '{property_value}' for component {component_id}\n"
160
+ else:
161
+ return None, f"Error: Property '{property_name}' not found in component {component_id}\n"
162
+ if not component_found:
163
+ return None, f"Error: Component with ID {component_id} not found.\n"
164
+ except Exception as e:
165
+ return None, f"Error: {str(e)}\n"
166
+
167
+ # Function to handle chat interaction
168
+ def run_chat(message, history):
169
+ global terminal_history
170
+ if message.startswith("!"):
171
+ command = message[1:]
172
+ terminal_history = run_terminal_command(command, history)
173
+ else:
174
+ model_index = 0 # Select the model to use for chat response
175
+ response = get_nlp_response(message, model_index)
176
+ if response:
177
+ return history, terminal_history + f"User: {message}\nAssistant: {response}"
178
+ else:
179
+ return history, terminal_history + f"User: {message}\nAssistant: I'm sorry, I couldn't generate a response. Please try again.\n"
180
+
181
+ # Code Generation
182
+ def generate_python_code(app_name):
183
+ code = f"""import gradio as gr\n\nwith gr.Blocks() as {app_name}:\n"""
184
+ for component in app_state["components"]:
185
+ code += " " + Component(**component).render() + "\n"
186
+ code += f"\n{app_name}.launch()\n"
187
+ return code
188
+
189
+ # Hugging Face Deployment
190
+ def deploy_to_huggingface(app_name):
191
+ # Generate Python code
192
+ code = generate_python_code(app_name)
193
+ # Create requirements.txt
194
+ with open("requirements.txt", "w") as f:
195
+ f.write("gradio==3.32.0\n")
196
+ # Create the app.py file
197
+ with open("app.py", "w") as f:
198
+ f.write(code)
199
+ # Execute the deployment command
200
+ try:
201
+ subprocess.run(["huggingface-cli", "repo", "create", "--type", "space", "--space_sdk", "gradio", app_name], check=True)
202
+ subprocess.run(["git", "init"], cwd=f"./{app_name}", check=True)
203
+ subprocess.run(["git", "add", "."], cwd=f"./{app_name}", check=True)
204
+ subprocess.run(["git", "commit", "-m", "Initial commit"], cwd=f"./{app_name}", check=True)
205
+ subprocess.run(["git", "push", "https://huggingface.co/spaces/" + app_name, "main"], cwd=f"./{app_name}", check=True)
206
+ return f"Successfully deployed to Hugging Face Spaces: https://huggingface.co/spaces/{app_name}"
207
+ except Exception as e:
208
+ return f"Error deploying to Hugging Face Spaces: {e}"
209
+
210
+ # Gradio Interface
211
+ with gr.Blocks() as iface:
212
+ # Chat Interface
213
+ chat_history = gr.Chatbot(label="Chat with Agent")
214
+ chat_input = gr.Textbox(label="Your Message")
215
+ chat_button = gr.Button("Send")
216
+ chat_button.click(run_chat, inputs=[chat_input, chat_history], outputs=[chat_history, terminal_output])
217
+
218
+ # Terminal
219
+ terminal_output = gr.Textbox(lines=8, label="Terminal", value=terminal_history)
220
+ terminal_input = gr.Textbox(label="Enter Command")
221
+ terminal_button = gr.Button("Run")
222
+ terminal_button.click(run_terminal_command, inputs=[terminal_input, terminal_output], outputs=terminal_output)
223
+
224
+ iface.launch()