Spaces:
Runtime error
Runtime error
acecalisto3
commited on
Commit
•
a9df132
1
Parent(s):
b76e9b0
Update app.py
Browse files
app.py
CHANGED
@@ -504,7 +504,6 @@ class TemplateManager:
|
|
504 |
def classify_image(image):
|
505 |
if image is None:
|
506 |
return {"error": 1.0}
|
507 |
-
# Add classification logic here
|
508 |
return {"class1": 0.8, "class2": 0.2}
|
509 |
|
510 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
@@ -515,7 +514,7 @@ class TemplateManager:
|
|
515 |
classify_btn = gr.Button("Classify")
|
516 |
with gr.Column():
|
517 |
output_labels = gr.Label()
|
518 |
-
|
519 |
classify_btn.click(
|
520 |
fn=classify_image,
|
521 |
inputs=input_image,
|
@@ -529,61 +528,939 @@ class TemplateManager:
|
|
529 |
components=["Image", "Button", "Label"],
|
530 |
metadata={"category": "computer_vision"}
|
531 |
),
|
532 |
-
|
533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
code="""
|
535 |
import gradio as gr
|
536 |
import numpy as np
|
537 |
|
538 |
-
def
|
539 |
-
if
|
540 |
-
return
|
541 |
-
|
542 |
-
|
543 |
-
if "word_count" in options:
|
544 |
-
results.append(f"Word count: {len(text.split())}")
|
545 |
-
if "char_count" in options:
|
546 |
-
results.append(f"Character count: {len(text)}")
|
547 |
-
if "sentiment" in options:
|
548 |
-
# Add sentiment analysis logic here
|
549 |
-
results.append("Sentiment: Neutral")
|
550 |
-
|
551 |
-
return "\\n".join(results)
|
552 |
|
553 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
554 |
-
gr.Markdown("#
|
555 |
with gr.Row():
|
556 |
with gr.Column():
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
)
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
566 |
)
|
567 |
-
|
568 |
with gr.Column():
|
569 |
-
|
570 |
-
|
571 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
)
|
573 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
analyze_btn.click(
|
575 |
-
fn=
|
576 |
-
inputs=
|
577 |
-
outputs=
|
578 |
)
|
579 |
|
580 |
if __name__ == "__main__":
|
581 |
demo.launch()
|
582 |
""",
|
583 |
-
description="
|
584 |
-
components=["Textbox", "
|
585 |
metadata={"category": "nlp"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
}
|
588 |
|
589 |
def save_template(self, name: str, template: Template) -> bool:
|
|
|
504 |
def classify_image(image):
|
505 |
if image is None:
|
506 |
return {"error": 1.0}
|
|
|
507 |
return {"class1": 0.8, "class2": 0.2}
|
508 |
|
509 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
514 |
classify_btn = gr.Button("Classify")
|
515 |
with gr.Column():
|
516 |
output_labels = gr.Label()
|
517 |
+
|
518 |
classify_btn.click(
|
519 |
fn=classify_image,
|
520 |
inputs=input_image,
|
|
|
528 |
components=["Image", "Button", "Label"],
|
529 |
metadata={"category": "computer_vision"}
|
530 |
),
|
531 |
+
"chatbot": Template(
|
532 |
+
code="""
|
533 |
+
import gradio as gr
|
534 |
+
|
535 |
+
def respond(message, history):
|
536 |
+
return f"You said: {message}"
|
537 |
+
|
538 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
539 |
+
gr.Markdown("# AI Chatbot")
|
540 |
+
chatbot = gr.Chatbot()
|
541 |
+
msg = gr.Textbox(label="Message")
|
542 |
+
clear = gr.Button("Clear")
|
543 |
+
|
544 |
+
msg.submit(respond, [msg, chatbot], [chatbot])
|
545 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
546 |
+
|
547 |
+
if __name__ == "__main__":
|
548 |
+
demo.launch()
|
549 |
+
""",
|
550 |
+
description="Interactive chatbot interface",
|
551 |
+
components=["Chatbot", "Textbox", "Button"],
|
552 |
+
metadata={"category": "nlp"}
|
553 |
+
),
|
554 |
+
"audio_processor": Template(
|
555 |
code="""
|
556 |
import gradio as gr
|
557 |
import numpy as np
|
558 |
|
559 |
+
def process_audio(audio, volume_factor=1.0):
|
560 |
+
if audio is None:
|
561 |
+
return None
|
562 |
+
sr, data = audio
|
563 |
+
return (sr, data * volume_factor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
566 |
+
gr.Markdown("# Audio Processor")
|
567 |
with gr.Row():
|
568 |
with gr.Column():
|
569 |
+
input_audio = gr.Audio(source="microphone", type="numpy")
|
570 |
+
volume = gr.Slider(minimum=0, maximum=2, value=1, label="Volume")
|
571 |
+
process_btn = gr.Button("Process")
|
572 |
+
with gr.Column():
|
573 |
+
output_audio = gr.Audio(type="numpy")
|
574 |
+
|
575 |
+
process_btn.click(
|
576 |
+
fn=process_audio,
|
577 |
+
inputs=[input_audio, volume],
|
578 |
+
outputs=output_audio
|
579 |
+
)
|
580 |
+
|
581 |
+
if __name__ == "__main__":
|
582 |
+
demo.launch()
|
583 |
+
""",
|
584 |
+
description="Audio processing interface",
|
585 |
+
components=["Audio", "Slider", "Button"],
|
586 |
+
metadata={"category": "audio"}
|
587 |
+
),
|
588 |
+
"file_processor": Template(
|
589 |
+
code="""
|
590 |
+
import gradio as gr
|
591 |
+
|
592 |
+
def process_file(file):
|
593 |
+
if file is None:
|
594 |
+
return "No file uploaded"
|
595 |
+
return f"Processed file: {file.name}"
|
596 |
+
|
597 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
598 |
+
gr.Markdown("# File Processor")
|
599 |
+
with gr.Row():
|
600 |
+
with gr.Column():
|
601 |
+
file_input = gr.File(label="Upload File")
|
602 |
+
process_btn = gr.Button("Process")
|
603 |
+
with gr.Column():
|
604 |
+
output = gr.Textbox(label="Results")
|
605 |
+
json_output = gr.JSON(label="Detailed Results")
|
606 |
+
|
607 |
+
process_btn.click(
|
608 |
+
fn=process_file,
|
609 |
+
inputs=file_input,
|
610 |
+
outputs=[output, json_output]
|
611 |
+
)
|
612 |
+
|
613 |
+
if __name__ == "__main__":
|
614 |
+
demo.launch()
|
615 |
+
""",
|
616 |
+
description="File processing interface",
|
617 |
+
components=["File", "Button", "Textbox", "JSON"],
|
618 |
+
metadata={"category": "utility"}
|
619 |
+
),
|
620 |
+
"data_visualization": Template(
|
621 |
+
code="""
|
622 |
+
import gradio as gr
|
623 |
+
import pandas as pd
|
624 |
+
import plotly.express as px
|
625 |
+
|
626 |
+
def visualize_data(data, plot_type):
|
627 |
+
if data is None:
|
628 |
+
return None
|
629 |
+
|
630 |
+
df = pd.read_csv(data.name)
|
631 |
+
if plot_type == "scatter":
|
632 |
+
fig = px.scatter(df, x=df.columns[0], y=df.columns[1])
|
633 |
+
elif plot_type == "line":
|
634 |
+
fig = px.line(df, x=df.columns[0], y=df.columns[1])
|
635 |
+
else:
|
636 |
+
fig = px.bar(df, x=df.columns[0], y=df.columns[1])
|
637 |
+
|
638 |
+
return fig
|
639 |
+
|
640 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
641 |
+
gr.Markdown("# Data Visualizer")
|
642 |
+
with gr.Row():
|
643 |
+
with gr.Column():
|
644 |
+
file_input = gr.File(label="Upload CSV")
|
645 |
+
plot_type = gr.Radio(
|
646 |
+
choices=["scatter", "line", "bar"],
|
647 |
+
label="Plot Type",
|
648 |
+
value="scatter"
|
649 |
)
|
650 |
+
visualize_btn = gr.Button("Visualize")
|
651 |
with gr.Column():
|
652 |
+
plot_output = gr.Plot(label="Visualization")
|
653 |
+
|
654 |
+
visualize_btn.click(
|
655 |
+
fn=visualize_data,
|
656 |
+
inputs=[file_input, plot_type],
|
657 |
+
outputs=plot_output
|
658 |
+
)
|
659 |
+
|
660 |
+
if __name__ == "__main__":
|
661 |
+
demo.launch()
|
662 |
+
""",
|
663 |
+
description="Data visualization interface",
|
664 |
+
components=["File", "Radio", "Button", "Plot"],
|
665 |
+
metadata={"category": "data_science"}
|
666 |
+
),
|
667 |
+
"form_builder": Template(
|
668 |
+
code="""
|
669 |
+
import gradio as gr
|
670 |
+
import json
|
671 |
+
|
672 |
+
def submit_form(name, email, age, interests, subscribe):
|
673 |
+
return json.dumps({
|
674 |
+
"name": name,
|
675 |
+
"email": email,
|
676 |
+
"age": age,
|
677 |
+
"interests": interests,
|
678 |
+
"subscribe": subscribe
|
679 |
+
}, indent=2)
|
680 |
+
|
681 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
682 |
+
gr.Markdown("# Form Builder")
|
683 |
+
with gr.Row():
|
684 |
+
with gr.Column():
|
685 |
+
name = gr.Textbox(label="Name")
|
686 |
+
email = gr.Textbox(label="Email")
|
687 |
+
age = gr.Number(label="Age")
|
688 |
+
interests = gr.CheckboxGroup(
|
689 |
+
choices=["Sports", "Music", "Art", "Technology"],
|
690 |
+
label="Interests"
|
691 |
)
|
692 |
+
subscribe = gr.Checkbox(label="Subscribe to newsletter")
|
693 |
+
submit_btn = gr.Button("Submit")
|
694 |
+
with gr.Column():
|
695 |
+
output = gr.JSON(label="Form Data")
|
696 |
+
|
697 |
+
submit_btn.click(
|
698 |
+
fn=submit_form,
|
699 |
+
inputs=[name, email, age, interests, subscribe],
|
700 |
+
outputs=output
|
701 |
+
)
|
702 |
+
|
703 |
+
if __name__ == "__main__":
|
704 |
+
demo.launch()
|
705 |
+
""",
|
706 |
+
description="Form builder interface",
|
707 |
+
components=["Textbox", "Number", "CheckboxGroup", "Checkbox", "Button", "JSON"],
|
708 |
+
metadata={"category": "utility"}
|
709 |
+
)
|
710 |
+
}
|
711 |
+
|
712 |
+
self.component_index = self._build_component_index()
|
713 |
+
self.category_index = self._build_category_index()
|
714 |
+
|
715 |
+
def _build_component_index(self) -> Dict[str, List[str]]:
|
716 |
+
"""Build index of templates by component"""
|
717 |
+
index = {}
|
718 |
+
for name, template in self.templates.items():
|
719 |
+
for component in template.components:
|
720 |
+
if component not in index:
|
721 |
+
index[component] = []
|
722 |
+
index[component].append(name)
|
723 |
+
return index
|
724 |
+
|
725 |
+
def _build_category_index(self) -> Dict[str, List[str]]:
|
726 |
+
"""Build index of templates by category"""
|
727 |
+
index = {}
|
728 |
+
for name, template in self.templates.items():
|
729 |
+
category = template.metadata.get("category", "other")
|
730 |
+
if category not in index:
|
731 |
+
index[category] = []
|
732 |
+
index[category].append(name)
|
733 |
+
return index
|
734 |
+
|
735 |
+
def search(self, query: str, limit: int = 5) -> List[Dict]:
|
736 |
+
"""Search templates by description or metadata"""
|
737 |
+
try:
|
738 |
+
results = []
|
739 |
+
for name, template in self.templates.items():
|
740 |
+
desc_score = difflib.SequenceMatcher(
|
741 |
+
None,
|
742 |
+
query.lower(),
|
743 |
+
template.description.lower()
|
744 |
+
).ratio()
|
745 |
+
|
746 |
+
category_score = difflib.SequenceMatcher(
|
747 |
+
None,
|
748 |
+
query.lower(),
|
749 |
+
template.metadata.get("category", "").lower()
|
750 |
+
).ratio()
|
751 |
+
|
752 |
+
comp_score = sum(0.2 for component in template.components if component.lower() in query.lower())
|
753 |
+
|
754 |
+
final_score = max(desc_score, category_score) + comp_score
|
755 |
+
|
756 |
+
results.append({
|
757 |
+
"name": name,
|
758 |
+
"template": template,
|
759 |
+
"score": final_score
|
760 |
+
})
|
761 |
+
|
762 |
+
results.sort(key=lambda x: x["score"], reverse=True)
|
763 |
+
return results[:limit]
|
764 |
+
|
765 |
+
except Exception as e:
|
766 |
+
logger.error(f"Error searching templates: {str(e)}")
|
767 |
+
return []
|
768 |
+
|
769 |
+
def search_by_components(self, components: List[str], limit: int = 5) -> List[Dict]:
|
770 |
+
"""Search templates by required components"""
|
771 |
+
try:
|
772 |
+
results = []
|
773 |
+
for name, template in self.templates.items():
|
774 |
+
matches = sum(1 for c in components if c in template.components)
|
775 |
+
if matches > 0:
|
776 |
+
score = matches / len(components)
|
777 |
+
results.append({
|
778 |
+
"name": name,
|
779 |
+
"template": template,
|
780 |
+
"score": score
|
781 |
+
})
|
782 |
+
|
783 |
+
results.sort(key=lambda x: x["score"], reverse=True)
|
784 |
+
return results[:limit]
|
785 |
+
|
786 |
+
except Exception as e:
|
787 |
+
logger.error(f"Error searching by components: {str(e)}")
|
788 |
+
return []
|
789 |
+
|
790 |
+
def search_by_category(self, category: str) -> List[Dict]:
|
791 |
+
"""Get all templates in a category"""
|
792 |
+
try:
|
793 |
+
return [
|
794 |
+
{
|
795 |
+
"name": name,
|
796 |
+
"template": self.templates[name]
|
797 |
+
}
|
798 |
+
for name in self.category_index.get(category, [])
|
799 |
+
]
|
800 |
+
except Exception as e:
|
801 |
+
logger.error(f"Error searching by category: {str(e)}")
|
802 |
+
return []
|
803 |
+
|
804 |
+
def get_template(self, name: str) -> Optional[Template]:
|
805 |
+
"""Get specific template by name"""
|
806 |
+
return self.templates.get(name)
|
807 |
+
|
808 |
+
def get_categories(self) -> List[str]:
|
809 |
+
"""Get list of all categories"""
|
810 |
+
return list(self.category_index.keys())
|
811 |
+
|
812 |
+
def get_components(self) -> List[str]:
|
813 |
+
"""Get list of all components"""
|
814 |
+
return list(self.component_index.keys())
|
815 |
+
|
816 |
+
def export_templates(self, path: str):
|
817 |
+
"""Export templates to JSON file"""
|
818 |
+
try:
|
819 |
+
data = {
|
820 |
+
name: {
|
821 |
+
"description": template.description,
|
822 |
+
"components": template.components,
|
823 |
+
"metadata": template.metadata,
|
824 |
+
"example": template.example
|
825 |
+
}
|
826 |
+
for name, template in self.templates.items()
|
827 |
+
}
|
828 |
+
|
829 |
+
with open(path, 'w') as f:
|
830 |
+
json.dump(data, f, indent=2)
|
831 |
+
|
832 |
+
logger.info(f"Templates exported to {path}")
|
833 |
+
|
834 |
+
except Exception as e:
|
835 |
+
logger.error(f"Error exporting templates: {str(e)}")
|
836 |
+
raise
|
837 |
+
|
838 |
+
def import_templates(self, path: str):
|
839 |
+
"""Import templates from JSON file"""
|
840 |
+
try:
|
841 |
+
with open(path, 'r') as f:
|
842 |
+
data = json.load(f)
|
843 |
+
|
844 |
+
for name, template_data in data.items():
|
845 |
+
self.templates[name] = Template(
|
846 |
+
code="", # Code should be loaded separately
|
847 |
+
description=template_data["description"],
|
848 |
+
components=template_data["components"],
|
849 |
+
metadata=template_data["metadata"],
|
850 |
+
example=template_data.get("example")
|
851 |
+
)
|
852 |
+
|
853 |
+
# Rebuild indexes
|
854 |
+
self.component_index = self._build_component_index()
|
855 |
+
self.category_index = self._build_category_index()
|
856 |
+
|
857 |
+
logger.info(f"Templates imported from {path}")
|
858 |
+
|
859 |
+
except Exception as e:
|
860 |
+
logger.error(f"Error importing templates: {str(e)}")
|
861 |
+
raise
|
862 |
+
|
863 |
+
|
864 |
+
# Usage example:
|
865 |
+
if __name__ == "__main__":
|
866 |
+
# Initialize template manager
|
867 |
+
manager = TemplateManager()
|
868 |
+
|
869 |
+
# Search examples
|
870 |
+
print("\nSearching for 'machine learning':")
|
871 |
+
results = manager.search("machine learning")
|
872 |
+
for result in results:
|
873 |
+
print(f"{result['name']}: {result['score']:.2f}")
|
874 |
+
|
875 |
+
print("\nSearching for components ['Image', 'Slider']:")
|
876 |
+
results = manager.search_by_components(['Image', 'Slider'])
|
877 |
+
for result in results:
|
878 |
+
print(f"{result['name']}: {result['score']:.2f}")
|
879 |
+
|
880 |
+
print("\nCategories available:")
|
881 |
+
print(manager.get_categories())
|
882 |
+
|
883 |
+
print("\nComponents available:")
|
884 |
+
print(manager.get_components())
|
885 |
+
|
886 |
+
"text_summarizer": Template(
|
887 |
+
code="""
|
888 |
+
import gradio as gr
|
889 |
+
from transformers import pipeline
|
890 |
+
|
891 |
+
summarizer = pipeline("summarization")
|
892 |
+
|
893 |
+
def summarize_text(text):
|
894 |
+
summary = summarizer(text, max_length=150, min_length=40, do_sample=False)
|
895 |
+
return summary[0]['summary_text']
|
896 |
+
|
897 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
898 |
+
gr.Markdown("# Text Summarizer")
|
899 |
+
with gr.Row():
|
900 |
+
with gr.Column():
|
901 |
+
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text to summarize...")
|
902 |
+
summarize_btn = gr.Button("Summarize")
|
903 |
+
with gr.Column():
|
904 |
+
summary_output = gr.Textbox(label="Summary", lines=5)
|
905 |
+
|
906 |
+
summarize_btn.click(
|
907 |
+
fn=summarize_text,
|
908 |
+
inputs=input_text,
|
909 |
+
outputs=summary_output
|
910 |
+
)
|
911 |
+
|
912 |
+
if __name__ == "__main__":
|
913 |
+
demo.launch()
|
914 |
+
""",
|
915 |
+
description="Text summarization interface using a transformer model",
|
916 |
+
components=["Textbox", "Button"],
|
917 |
+
metadata={"category": "nlp"}
|
918 |
+
),
|
919 |
+
|
920 |
+
"image_captioner": Template(
|
921 |
+
code="""
|
922 |
+
import gradio as gr
|
923 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
924 |
+
from PIL import Image
|
925 |
+
|
926 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
927 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
928 |
+
|
929 |
+
def generate_caption(image):
|
930 |
+
inputs = processor(image, return_tensors="pt")
|
931 |
+
out = model.generate(**inputs)
|
932 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
933 |
+
return caption
|
934 |
+
|
935 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
936 |
+
gr.Markdown("# Image Caption Generator")
|
937 |
+
with gr.Row():
|
938 |
+
with gr.Column():
|
939 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
940 |
+
caption_btn = gr.Button("Generate Caption")
|
941 |
+
with gr.Column():
|
942 |
+
caption_output = gr.Textbox(label="Generated Caption")
|
943 |
+
|
944 |
+
caption_btn.click(
|
945 |
+
fn=generate_caption,
|
946 |
+
inputs=input_image,
|
947 |
+
outputs=caption_output
|
948 |
+
)
|
949 |
+
|
950 |
+
if __name__ == "__main__":
|
951 |
+
demo.launch()
|
952 |
+
""",
|
953 |
+
description="Image captioning interface using a transformer model",
|
954 |
+
components=["Image", "Button", "Textbox"],
|
955 |
+
metadata={"category": "computer_vision"}
|
956 |
+
),
|
957 |
+
|
958 |
+
"style_transfer": Template(
|
959 |
+
code="""
|
960 |
+
import gradio as gr
|
961 |
+
import tensorflow as tf
|
962 |
+
import tensorflow_hub as hub
|
963 |
+
|
964 |
+
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
|
965 |
+
|
966 |
+
def apply_style(content_image, style_image):
|
967 |
+
content_image = tf.image.convert_image_dtype(content_image, tf.float32)[tf.newaxis, ...]
|
968 |
+
style_image = tf.image.convert_image_dtype(style_image, tf.float32)[tf.newaxis, ...]
|
969 |
+
stylized_image = hub_model(content_image, style_image)[0]
|
970 |
+
return tf.squeeze(stylized_image).numpy()
|
971 |
+
|
972 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
973 |
+
gr.Markdown("# Neural Style Transfer")
|
974 |
+
with gr.Row():
|
975 |
+
with gr.Column():
|
976 |
+
content_image = gr.Image(label="Content Image")
|
977 |
+
style_image = gr.Image(label="Style Image")
|
978 |
+
transfer_btn = gr.Button("Transfer Style")
|
979 |
+
with gr.Column():
|
980 |
+
output_image = gr.Image(label="Stylized Image")
|
981 |
+
|
982 |
+
transfer_btn.click(
|
983 |
+
fn=apply_style,
|
984 |
+
inputs=[content_image, style_image],
|
985 |
+
outputs=output_image
|
986 |
+
)
|
987 |
+
|
988 |
+
if __name__ == "__main__":
|
989 |
+
demo.launch()
|
990 |
+
""",
|
991 |
+
description="Neural style transfer between two images",
|
992 |
+
components=["Image", "Button"],
|
993 |
+
metadata={"category": "computer_vision"}
|
994 |
+
),
|
995 |
+
|
996 |
+
"sentiment_analysis": Template(
|
997 |
+
code="""
|
998 |
+
import gradio as gr
|
999 |
+
from transformers import pipeline
|
1000 |
+
|
1001 |
+
sentiment_pipeline = pipeline("sentiment-analysis")
|
1002 |
+
|
1003 |
+
def analyze_sentiment(text):
|
1004 |
+
result = sentiment_pipeline(text)[0]
|
1005 |
+
return f"{result['label']} ({result['score']:.2f})"
|
1006 |
+
|
1007 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1008 |
+
gr.Markdown("# Sentiment Analysis")
|
1009 |
+
with gr.Row():
|
1010 |
+
with gr.Column():
|
1011 |
+
input_text = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text to analyze sentiment...")
|
1012 |
+
analyze_btn = gr.Button("Analyze Sentiment")
|
1013 |
+
with gr.Column():
|
1014 |
+
sentiment_output = gr.Textbox(label="Sentiment Result")
|
1015 |
+
|
1016 |
analyze_btn.click(
|
1017 |
+
fn=analyze_sentiment,
|
1018 |
+
inputs=input_text,
|
1019 |
+
outputs=sentiment_output
|
1020 |
)
|
1021 |
|
1022 |
if __name__ == "__main__":
|
1023 |
demo.launch()
|
1024 |
""",
|
1025 |
+
description="Sentiment analysis using transformer model",
|
1026 |
+
components=["Textbox", "Button"],
|
1027 |
metadata={"category": "nlp"}
|
1028 |
+
),
|
1029 |
+
|
1030 |
+
"pdf_to_text": Template(
|
1031 |
+
code="""
|
1032 |
+
import gradio as gr
|
1033 |
+
import PyPDF2
|
1034 |
+
|
1035 |
+
def extract_text_from_pdf(pdf):
|
1036 |
+
reader = PyPDF2.PdfFileReader(pdf)
|
1037 |
+
text = ''
|
1038 |
+
for page_num in range(reader.numPages):
|
1039 |
+
page = reader.getPage(page_num)
|
1040 |
+
text += page.extract_text()
|
1041 |
+
return text
|
1042 |
+
|
1043 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1044 |
+
gr.Markdown("# PDF to Text Extractor")
|
1045 |
+
with gr.Row():
|
1046 |
+
with gr.Column():
|
1047 |
+
pdf_file = gr.File(label="Upload PDF")
|
1048 |
+
extract_btn = gr.Button("Extract Text")
|
1049 |
+
with gr.Column():
|
1050 |
+
output_text = gr.Textbox(label="Extracted Text", lines=10)
|
1051 |
+
|
1052 |
+
extract_btn.click(
|
1053 |
+
fn=extract_text_from_pdf,
|
1054 |
+
inputs=pdf_file,
|
1055 |
+
outputs=output_text
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
if __name__ == "__main__":
|
1059 |
+
demo.launch()
|
1060 |
+
""",
|
1061 |
+
description="Extract text from PDF files",
|
1062 |
+
components=["File", "Button", "Textbox"],
|
1063 |
+
metadata={"category": "utility"}
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
"website_monitor": Template(
|
1067 |
+
code="""
|
1068 |
+
import gradio as gr
|
1069 |
+
import requests
|
1070 |
+
from datetime import datetime
|
1071 |
+
|
1072 |
+
def monitor_website(url):
|
1073 |
+
try:
|
1074 |
+
response = requests.get(url)
|
1075 |
+
status_code = response.status_code
|
1076 |
+
status = "Up" if status_code == 200 else "Down"
|
1077 |
+
return {
|
1078 |
+
"url": url,
|
1079 |
+
"status": status,
|
1080 |
+
"response_time": response.elapsed.total_seconds(),
|
1081 |
+
"last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
1082 |
+
}
|
1083 |
+
except Exception as e:
|
1084 |
+
return {"error": str(e)}
|
1085 |
+
|
1086 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1087 |
+
gr.Markdown("# Website Uptime Monitor")
|
1088 |
+
with gr.Row():
|
1089 |
+
with gr.Column():
|
1090 |
+
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
|
1091 |
+
check_btn = gr.Button("Check Website")
|
1092 |
+
with gr.Column():
|
1093 |
+
result_output = gr.JSON(label="Monitoring Result")
|
1094 |
+
|
1095 |
+
check_btn.click(
|
1096 |
+
fn=monitor_website,
|
1097 |
+
inputs=url_input,
|
1098 |
+
outputs=result_output
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
if __name__ == "__main__":
|
1102 |
+
demo.launch()
|
1103 |
+
""",
|
1104 |
+
description="Monitor the uptime and response time of a website",
|
1105 |
+
components=["Textbox", "Button", "JSON"],
|
1106 |
+
metadata={"category": "web_monitoring"}
|
1107 |
+
),
|
1108 |
+
|
1109 |
+
"rss_feed_fetcher": Template(
|
1110 |
+
code="""
|
1111 |
+
import gradio as gr
|
1112 |
+
import feedparser
|
1113 |
+
|
1114 |
+
def fetch_rss_feed(url):
|
1115 |
+
feed = feedparser.parse(url)
|
1116 |
+
if feed.bozo:
|
1117 |
+
return {"error": "Invalid RSS feed URL"}
|
1118 |
+
|
1119 |
+
return [{"title": entry.title, "link": entry.link} for entry in feed.entries[:5]]
|
1120 |
+
|
1121 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1122 |
+
gr.Markdown("# RSS Feed Fetcher")
|
1123 |
+
with gr.Row():
|
1124 |
+
with gr.Column():
|
1125 |
+
feed_url = gr.Textbox(label="RSS Feed URL", placeholder="https://example.com/feed")
|
1126 |
+
fetch_btn = gr.Button("Fetch Latest Posts")
|
1127 |
+
with gr.Column():
|
1128 |
+
feed_output = gr.JSON(label="Latest Feed Entries")
|
1129 |
+
|
1130 |
+
fetch_btn.click(
|
1131 |
+
fn=fetch_rss_feed,
|
1132 |
+
inputs=feed_url,
|
1133 |
+
outputs=feed_output
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
if __name__ == "__main__":
|
1137 |
+
demo.launch()
|
1138 |
+
""",
|
1139 |
+
description="Fetch the latest entries from an RSS feed",
|
1140 |
+
components=["Textbox", "Button", "JSON"],
|
1141 |
+
metadata={"category": "web_scraping"}
|
1142 |
+
),
|
1143 |
+
|
1144 |
+
"web_scraper": Template(
|
1145 |
+
code="""
|
1146 |
+
import gradio as gr
|
1147 |
+
from bs4 import BeautifulSoup
|
1148 |
+
import requests
|
1149 |
+
|
1150 |
+
def scrape_website(url, tag):
|
1151 |
+
try:
|
1152 |
+
response = requests.get(url)
|
1153 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
1154 |
+
elements = soup.find_all(tag)
|
1155 |
+
return [element.get_text() for element in elements][:5] # Limit to 5 elements
|
1156 |
+
except Exception as e:
|
1157 |
+
return f"Error: {str(e)}"
|
1158 |
+
|
1159 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1160 |
+
gr.Markdown("# Web Scraper")
|
1161 |
+
with gr.Row():
|
1162 |
+
with gr.Column():
|
1163 |
+
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
|
1164 |
+
tag_input = gr.Textbox(label="HTML Tag to Scrape", placeholder="h1, p, div, etc.")
|
1165 |
+
scrape_btn = gr.Button("Scrape Website")
|
1166 |
+
with gr.Column():
|
1167 |
+
result_output = gr.JSON(label="Scraped Results")
|
1168 |
+
|
1169 |
+
scrape_btn.click(
|
1170 |
+
fn=scrape_website,
|
1171 |
+
inputs=[url_input, tag_input],
|
1172 |
+
outputs=result_output
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
if __name__ == "__main__":
|
1176 |
+
demo.launch()
|
1177 |
+
""",
|
1178 |
+
description="Scrape text from a website based on the specified HTML tag",
|
1179 |
+
components=["Textbox", "Button", "JSON"],
|
1180 |
+
metadata={"category": "web_scraping"}
|
1181 |
+
),
|
1182 |
+
|
1183 |
+
"api_tester": Template(
|
1184 |
+
code="""
|
1185 |
+
import gradio as gr
|
1186 |
+
import requests
|
1187 |
+
|
1188 |
+
def test_api(endpoint, method, payload):
|
1189 |
+
try:
|
1190 |
+
if method == "GET":
|
1191 |
+
response = requests.get(endpoint)
|
1192 |
+
elif method == "POST":
|
1193 |
+
response = requests.post(endpoint, json=payload)
|
1194 |
+
else:
|
1195 |
+
return "Unsupported method"
|
1196 |
+
|
1197 |
+
return {
|
1198 |
+
"status_code": response.status_code,
|
1199 |
+
"response_body": response.json() if response.headers.get("Content-Type") == "application/json" else response.text
|
1200 |
+
}
|
1201 |
+
except Exception as e:
|
1202 |
+
return {"error": str(e)}
|
1203 |
+
|
1204 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1205 |
+
gr.Markdown("# API Tester")
|
1206 |
+
with gr.Row():
|
1207 |
+
with gr.Column():
|
1208 |
+
endpoint = gr.Textbox(label="API Endpoint", placeholder="https://api.example.com/endpoint")
|
1209 |
+
method = gr.Radio(choices=["GET", "POST"], label="HTTP Method", value="GET")
|
1210 |
+
payload = gr.JSON(label="Payload (for POST)", value={})
|
1211 |
+
test_btn = gr.Button("Test API")
|
1212 |
+
with gr.Column():
|
1213 |
+
result_output = gr.JSON(label="API Response")
|
1214 |
+
|
1215 |
+
test_btn.click(
|
1216 |
+
fn=test_api,
|
1217 |
+
inputs=[endpoint, method, payload],
|
1218 |
+
outputs=result_output
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
if __name__ == "__main__":
|
1222 |
+
demo.launch()
|
1223 |
+
""",
|
1224 |
+
description="Test API endpoints with GET and POST requests",
|
1225 |
+
components=["Textbox", "Radio", "JSON", "Button"],
|
1226 |
+
metadata={"category": "api_testing"}
|
1227 |
+
),
|
1228 |
+
|
1229 |
+
"email_scheduler": Template(
|
1230 |
+
code="""
|
1231 |
+
import gradio as gr
|
1232 |
+
import smtplib
|
1233 |
+
from email.mime.text import MIMEText
|
1234 |
+
from email.mime.multipart import MIMEMultipart
|
1235 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
1236 |
+
|
1237 |
+
scheduler = BackgroundScheduler()
|
1238 |
+
scheduler.start()
|
1239 |
+
|
1240 |
+
def send_email(to_email, subject, body):
|
1241 |
+
try:
|
1242 |
+
sender_email = "your_email@example.com"
|
1243 |
+
password = "your_password"
|
1244 |
+
|
1245 |
+
msg = MIMEMultipart()
|
1246 |
+
msg['From'] = sender_email
|
1247 |
+
msg['To'] = to_email
|
1248 |
+
msg['Subject'] = subject
|
1249 |
+
|
1250 |
+
msg.attach(MIMEText(body, 'plain'))
|
1251 |
+
|
1252 |
+
server = smtplib.SMTP('smtp.example.com', 587)
|
1253 |
+
server.starttls()
|
1254 |
+
server.login(sender_email, password)
|
1255 |
+
text = msg.as_string()
|
1256 |
+
server.sendmail(sender_email, to_email, text)
|
1257 |
+
server.quit()
|
1258 |
+
|
1259 |
+
return "Email sent successfully"
|
1260 |
+
except Exception as e:
|
1261 |
+
return f"Error: {str(e)}"
|
1262 |
+
|
1263 |
+
def schedule_email(to_email, subject, body, delay):
|
1264 |
+
scheduler.add_job(send_email, 'interval', seconds=delay, args=[to_email, subject, body])
|
1265 |
+
return f"Email scheduled to be sent in {delay} seconds"
|
1266 |
+
|
1267 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1268 |
+
gr.Markdown("# Email Scheduler")
|
1269 |
+
with gr.Row():
|
1270 |
+
with gr.Column():
|
1271 |
+
to_email = gr.Textbox(label="Recipient Email")
|
1272 |
+
subject = gr.Textbox(label="Subject")
|
1273 |
+
body = gr.Textbox(label="Email Body", lines=5)
|
1274 |
+
delay = gr.Slider(label="Delay (seconds)", minimum=10, maximum=300, step=10, value=60)
|
1275 |
+
schedule_btn = gr.Button("Schedule Email")
|
1276 |
+
with gr.Column():
|
1277 |
+
result_output = gr.Textbox(label="Result")
|
1278 |
+
|
1279 |
+
schedule_btn.click(
|
1280 |
+
fn=schedule_email,
|
1281 |
+
inputs=[to_email, subject, body, delay],
|
1282 |
+
outputs=result_output
|
1283 |
+
)
|
1284 |
+
|
1285 |
+
if __name__ == "__main__":
|
1286 |
+
demo.launch()
|
1287 |
+
""",
|
1288 |
+
description="Schedule emails to be sent after a delay",
|
1289 |
+
components=["Textbox", "Slider", "Button"],
|
1290 |
+
metadata={"category": "task_automation"}
|
1291 |
)
|
1292 |
+
|
1293 |
+
"log_file_analyzer": Template(
|
1294 |
+
code="""
|
1295 |
+
import gradio as gr
|
1296 |
+
import re
|
1297 |
+
|
1298 |
+
def analyze_logs(log_file, filter_text):
|
1299 |
+
try:
|
1300 |
+
logs = log_file.read().decode("utf-8")
|
1301 |
+
if filter_text:
|
1302 |
+
filtered_logs = "\n".join([line for line in logs.splitlines() if re.search(filter_text, line)])
|
1303 |
+
else:
|
1304 |
+
filtered_logs = logs
|
1305 |
+
return filtered_logs
|
1306 |
+
except Exception as e:
|
1307 |
+
return f"Error: {str(e)}"
|
1308 |
+
|
1309 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1310 |
+
gr.Markdown("# Log File Analyzer")
|
1311 |
+
with gr.Row():
|
1312 |
+
with gr.Column():
|
1313 |
+
log_input = gr.File(label="Upload Log File")
|
1314 |
+
filter_input = gr.Textbox(label="Filter (Regex)", placeholder="Error|Warning")
|
1315 |
+
analyze_btn = gr.Button("Analyze Logs")
|
1316 |
+
with gr.Column():
|
1317 |
+
output_logs = gr.Textbox(label="Filtered Logs", lines=20)
|
1318 |
+
|
1319 |
+
analyze_btn.click(
|
1320 |
+
fn=analyze_logs,
|
1321 |
+
inputs=[log_input, filter_input],
|
1322 |
+
outputs=output_logs
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
if __name__ == "__main__":
|
1326 |
+
demo.launch()
|
1327 |
+
""",
|
1328 |
+
description="Analyze and filter log files using regex",
|
1329 |
+
components=["File", "Textbox", "Button"],
|
1330 |
+
metadata={"category": "log_analysis"}
|
1331 |
+
),
|
1332 |
+
|
1333 |
+
"file_encryption_tool": Template(
|
1334 |
+
code="""
|
1335 |
+
import gradio as gr
|
1336 |
+
from cryptography.fernet import Fernet
|
1337 |
+
|
1338 |
+
def encrypt_file(file, password):
|
1339 |
+
try:
|
1340 |
+
key = password.ljust(32, '0').encode()[:32] # Basic password -> key mapping
|
1341 |
+
cipher = Fernet(Fernet.generate_key())
|
1342 |
+
file_data = file.read()
|
1343 |
+
encrypted_data = cipher.encrypt(file_data)
|
1344 |
+
return encrypted_data.decode("utf-8")
|
1345 |
+
except Exception as e:
|
1346 |
+
return f"Error: {str(e)}"
|
1347 |
+
|
1348 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1349 |
+
gr.Markdown("# File Encryption Tool")
|
1350 |
+
with gr.Row():
|
1351 |
+
with gr.Column():
|
1352 |
+
file_input = gr.File(label="Upload File")
|
1353 |
+
password_input = gr.Textbox(label="Password", type="password")
|
1354 |
+
encrypt_btn = gr.Button("Encrypt File")
|
1355 |
+
with gr.Column():
|
1356 |
+
encrypted_output = gr.Textbox(label="Encrypted Data", lines=20)
|
1357 |
+
|
1358 |
+
encrypt_btn.click(
|
1359 |
+
fn=encrypt_file,
|
1360 |
+
inputs=[file_input, password_input],
|
1361 |
+
outputs=encrypted_output
|
1362 |
+
)
|
1363 |
+
|
1364 |
+
if __name__ == "__main__":
|
1365 |
+
demo.launch()
|
1366 |
+
""",
|
1367 |
+
description="Encrypt a file using a password-based key",
|
1368 |
+
components=["File", "Textbox", "Button"],
|
1369 |
+
metadata={"category": "security"}
|
1370 |
+
),
|
1371 |
+
|
1372 |
+
"task_scheduler": Template(
|
1373 |
+
code="""
|
1374 |
+
import gradio as gr
|
1375 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
1376 |
+
from datetime import datetime
|
1377 |
+
|
1378 |
+
scheduler = BackgroundScheduler()
|
1379 |
+
scheduler.start()
|
1380 |
+
|
1381 |
+
def schedule_task(task_name, interval):
|
1382 |
+
scheduler.add_job(lambda: print(f"Running task: {task_name} at {datetime.now()}"), 'interval', seconds=interval)
|
1383 |
+
return f"Task '{task_name}' scheduled to run every {interval} seconds."
|
1384 |
+
|
1385 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1386 |
+
gr.Markdown("# Task Scheduler")
|
1387 |
+
with gr.Row():
|
1388 |
+
with gr.Column():
|
1389 |
+
task_input = gr.Textbox(label="Task Name", placeholder="Example Task")
|
1390 |
+
interval_input = gr.Slider(minimum=1, maximum=60, label="Interval (Seconds)", value=10)
|
1391 |
+
schedule_btn = gr.Button("Schedule Task")
|
1392 |
+
with gr.Column():
|
1393 |
+
result_output = gr.Textbox(label="Result")
|
1394 |
+
|
1395 |
+
schedule_btn.click(
|
1396 |
+
fn=schedule_task,
|
1397 |
+
inputs=[task_input, interval_input],
|
1398 |
+
outputs=result_output
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
if __name__ == "__main__":
|
1402 |
+
demo.launch()
|
1403 |
+
""",
|
1404 |
+
description="Schedule tasks to run at regular intervals",
|
1405 |
+
components=["Textbox", "Slider", "Button"],
|
1406 |
+
metadata={"category": "task_automation"}
|
1407 |
+
),
|
1408 |
+
|
1409 |
+
"code_comparator": Template(
|
1410 |
+
code="""
|
1411 |
+
import gradio as gr
|
1412 |
+
import difflib
|
1413 |
+
|
1414 |
+
def compare_code(code1, code2):
|
1415 |
+
diff = difflib.unified_diff(code1.splitlines(), code2.splitlines(), lineterm='', fromfile='code1', tofile='code2')
|
1416 |
+
return '\n'.join(diff)
|
1417 |
+
|
1418 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1419 |
+
gr.Markdown("# Code Comparator")
|
1420 |
+
with gr.Row():
|
1421 |
+
with gr.Column():
|
1422 |
+
code1_input = gr.Textbox(label="Code 1", lines=15, placeholder="Paste the first code snippet here...")
|
1423 |
+
code2_input = gr.Textbox(label="Code 2", lines=15, placeholder="Paste the second code snippet here...")
|
1424 |
+
compare_btn = gr.Button("Compare Codes")
|
1425 |
+
with gr.Column():
|
1426 |
+
diff_output = gr.Textbox(label="Difference", lines=20)
|
1427 |
+
|
1428 |
+
compare_btn.click(
|
1429 |
+
fn=compare_code,
|
1430 |
+
inputs=[code1_input, code2_input],
|
1431 |
+
outputs=diff_output
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
if __name__ == "__main__":
|
1435 |
+
demo.launch()
|
1436 |
+
""",
|
1437 |
+
description="Compare two code snippets and show the differences",
|
1438 |
+
components=["Textbox", "Button"],
|
1439 |
+
metadata={"category": "development"}
|
1440 |
+
),
|
1441 |
+
|
1442 |
+
"database_query_tool": Template(
|
1443 |
+
code="""
|
1444 |
+
import gradio as gr
|
1445 |
+
import sqlite3
|
1446 |
+
|
1447 |
+
def query_database(db_file, query):
|
1448 |
+
try:
|
1449 |
+
conn = sqlite3.connect(db_file.name)
|
1450 |
+
cursor = conn.cursor()
|
1451 |
+
cursor.execute(query)
|
1452 |
+
results = cursor.fetchall()
|
1453 |
+
conn.close()
|
1454 |
+
return results
|
1455 |
+
except Exception as e:
|
1456 |
+
return f"Error: {str(e)}"
|
1457 |
+
|
1458 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1459 |
+
gr.Markdown("# Database Query Tool")
|
1460 |
+
with gr.Row():
|
1461 |
+
with gr.Column():
|
1462 |
+
db_input = gr.File(label="Upload SQLite DB File")
|
1463 |
+
query_input = gr.Textbox(label="SQL Query", placeholder="SELECT * FROM table_name;")
|
1464 |
}
|
1465 |
|
1466 |
def save_template(self, name: str, template: Template) -> bool:
|