Spaces:
Runtime error
Runtime error
acecalisto3
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -26,8 +26,10 @@ import gradio as gr
|
|
26 |
import xml.etree.ElementTree as ET
|
27 |
import torch
|
28 |
import mysql.connector
|
29 |
-
from mysql.connector import errorcode
|
30 |
from dotenv import load_dotenv
|
|
|
|
|
31 |
|
32 |
# Load environment variables from .env file
|
33 |
load_dotenv()
|
@@ -37,6 +39,9 @@ logging.basicConfig(
|
|
37 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
38 |
)
|
39 |
|
|
|
|
|
|
|
40 |
# Define constants
|
41 |
DEFAULT_FILE_PATH = "scraped_data"
|
42 |
PURPOSE = (
|
@@ -49,35 +54,46 @@ HISTORY = []
|
|
49 |
CURRENT_TASK = None
|
50 |
STOP_THREADS = False # Flag to stop scraping threads
|
51 |
|
52 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def get_db_connection():
|
54 |
"""
|
55 |
-
|
56 |
-
Returns None if connection fails.
|
57 |
"""
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
if connection.is_connected():
|
66 |
-
logging.info("Connected to MySQL database.")
|
67 |
-
return connection
|
68 |
-
except mysql.connector.Error as err:
|
69 |
-
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
|
70 |
-
logging.warning("Invalid database credentials. Falling back to CSV storage.")
|
71 |
-
elif err.errno == errorcode.ER_BAD_DB_ERROR:
|
72 |
-
logging.warning("Database does not exist. Falling back to CSV storage.")
|
73 |
-
else:
|
74 |
-
logging.warning(f"MySQL connection error: {err}. Falling back to CSV storage.")
|
75 |
return None
|
76 |
|
77 |
-
# Initialize Database
|
78 |
def initialize_database():
|
79 |
"""
|
80 |
-
Initializes the database by creating necessary tables if they do not exist.
|
81 |
"""
|
82 |
connection = get_db_connection()
|
83 |
if connection is None:
|
@@ -98,6 +114,13 @@ def initialize_database():
|
|
98 |
cursor.execute(create_scraped_data_table)
|
99 |
logging.info("Table 'scraped_data' is ready.")
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
# Create table for action logs
|
102 |
create_action_logs_table = """
|
103 |
CREATE TABLE IF NOT EXISTS action_logs (
|
@@ -110,12 +133,92 @@ def initialize_database():
|
|
110 |
logging.info("Table 'action_logs' is ready.")
|
111 |
|
112 |
except mysql.connector.Error as err:
|
113 |
-
logging.error(f"Error
|
114 |
finally:
|
115 |
cursor.close()
|
116 |
connection.close()
|
117 |
logging.info("Database initialization complete.")
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# Function to monitor URLs for changes
|
120 |
def monitor_urls(
|
121 |
storage_location: str,
|
@@ -123,6 +226,7 @@ def monitor_urls(
|
|
123 |
scrape_interval: int,
|
124 |
content_type: str,
|
125 |
selector: str = None,
|
|
|
126 |
):
|
127 |
"""
|
128 |
Monitors the specified URLs for changes and logs any detected changes to the database or CSV.
|
@@ -143,6 +247,8 @@ def monitor_urls(
|
|
143 |
try:
|
144 |
while not STOP_THREADS:
|
145 |
for url in urls:
|
|
|
|
|
146 |
try:
|
147 |
driver.get(url)
|
148 |
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
|
@@ -195,6 +301,9 @@ def monitor_urls(
|
|
195 |
# Fallback to CSV
|
196 |
log_to_csv(storage_location, url, current_hash, date_time_str)
|
197 |
|
|
|
|
|
|
|
198 |
except (
|
199 |
NoSuchElementException,
|
200 |
StaleElementReferenceException,
|
@@ -202,90 +311,13 @@ def monitor_urls(
|
|
202 |
Exception,
|
203 |
) as e:
|
204 |
logging.error(f"Error accessing {url}: {e}")
|
|
|
|
|
205 |
time.sleep(scrape_interval * 60) # Wait for the next scrape interval
|
206 |
finally:
|
207 |
driver.quit()
|
208 |
logging.info("ChromeDriver session ended.")
|
209 |
|
210 |
-
def log_to_csv(storage_location: str, url: str, content_hash: str, change_detected: str):
|
211 |
-
"""
|
212 |
-
Logs the change to a CSV file in the storage_location.
|
213 |
-
"""
|
214 |
-
try:
|
215 |
-
os.makedirs(storage_location, exist_ok=True)
|
216 |
-
csv_file_path = os.path.join(storage_location, f"{urlparse(url).hostname}_changes.csv")
|
217 |
-
file_exists = os.path.isfile(csv_file_path)
|
218 |
-
|
219 |
-
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
|
220 |
-
fieldnames = ["date", "time", "url", "content_hash", "change"]
|
221 |
-
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
222 |
-
if not file_exists:
|
223 |
-
writer.writeheader()
|
224 |
-
writer.writerow(
|
225 |
-
{
|
226 |
-
"date": change_detected.split()[0],
|
227 |
-
"time": change_detected.split()[1],
|
228 |
-
"url": url,
|
229 |
-
"content_hash": content_hash,
|
230 |
-
"change": "Content changed",
|
231 |
-
}
|
232 |
-
)
|
233 |
-
logging.info(f"Change detected at {url} on {change_detected} and logged to CSV.")
|
234 |
-
except Exception as e:
|
235 |
-
logging.error(f"Error logging data to CSV: {e}")
|
236 |
-
|
237 |
-
# Function to create WebDriver
|
238 |
-
def create_driver(options: Options) -> webdriver.Chrome:
|
239 |
-
"""
|
240 |
-
Initializes and returns a Selenium Chrome WebDriver instance.
|
241 |
-
"""
|
242 |
-
try:
|
243 |
-
driver = webdriver.Chrome(
|
244 |
-
service=Service(ChromeDriverManager().install()), options=options
|
245 |
-
)
|
246 |
-
logging.info("ChromeDriver initialized successfully.")
|
247 |
-
return driver
|
248 |
-
except Exception as exception:
|
249 |
-
logging.error(f"Error initializing ChromeDriver: {exception}")
|
250 |
-
return None
|
251 |
-
|
252 |
-
# Function to get initial observation
|
253 |
-
def get_initial_observation(
|
254 |
-
driver: webdriver.Chrome, url: str, content_type: str, selector: str = None
|
255 |
-
) -> str:
|
256 |
-
"""
|
257 |
-
Retrieves the initial content from the URL and returns its MD5 hash.
|
258 |
-
"""
|
259 |
-
try:
|
260 |
-
driver.get(url)
|
261 |
-
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
|
262 |
-
time.sleep(2) # Additional wait for dynamic content
|
263 |
-
|
264 |
-
if content_type == "text":
|
265 |
-
initial_content = driver.page_source
|
266 |
-
elif content_type == "media":
|
267 |
-
if selector:
|
268 |
-
try:
|
269 |
-
elements = WebDriverWait(driver, 5).until(
|
270 |
-
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
|
271 |
-
)
|
272 |
-
initial_content = [element.get_attribute("src") for element in elements]
|
273 |
-
except TimeoutException:
|
274 |
-
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
|
275 |
-
initial_content = []
|
276 |
-
else:
|
277 |
-
elements = driver.find_elements(By.TAG_NAME, "img")
|
278 |
-
initial_content = [element.get_attribute("src") for element in elements]
|
279 |
-
else:
|
280 |
-
initial_content = driver.page_source
|
281 |
-
|
282 |
-
initial_hash = hashlib.md5(str(initial_content).encode("utf-8")).hexdigest()
|
283 |
-
logging.info(f"Initial hash for {url}: {initial_hash}")
|
284 |
-
return initial_hash
|
285 |
-
except Exception as exception:
|
286 |
-
logging.error(f"Error accessing {url}: {exception}")
|
287 |
-
return None
|
288 |
-
|
289 |
# Function to start scraping
|
290 |
def start_scraping(
|
291 |
storage_location: str,
|
@@ -293,9 +325,10 @@ def start_scraping(
|
|
293 |
scrape_interval: int,
|
294 |
content_type: str,
|
295 |
selector: str = None,
|
|
|
296 |
) -> str:
|
297 |
"""
|
298 |
-
Starts the scraping process in a separate thread.
|
299 |
"""
|
300 |
global CURRENT_TASK, HISTORY, STOP_THREADS
|
301 |
|
@@ -310,60 +343,61 @@ def start_scraping(
|
|
310 |
# Initialize database tables
|
311 |
initialize_database()
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
348 |
# Fallback to CSV
|
349 |
-
log_to_csv(storage_location, url, initial_hash,
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
# Fallback to CSV
|
355 |
-
log_to_csv(storage_location, url, initial_hash, datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
|
356 |
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
finally:
|
361 |
-
driver.quit()
|
362 |
|
363 |
-
# Start the monitoring thread
|
364 |
monitor_thread = threading.Thread(
|
365 |
target=monitor_urls,
|
366 |
-
args=(storage_location, url_list, scrape_interval, content_type, selector),
|
367 |
daemon=True,
|
368 |
)
|
369 |
monitor_thread.start()
|
@@ -533,51 +567,52 @@ def generate_rss_feed(storage_location: str, url: str) -> str:
|
|
533 |
logging.error(f"Error generating RSS feed for {url}: {e}")
|
534 |
return f"Error generating RSS feed for {url}: {e}"
|
535 |
|
536 |
-
# Function to
|
537 |
-
def load_model():
|
538 |
-
"""
|
539 |
-
Loads the Mistral model and tokenizer once and returns the pipeline.
|
540 |
-
"""
|
541 |
-
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
542 |
-
try:
|
543 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
544 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
545 |
-
pipe = pipeline(
|
546 |
-
"text-generation",
|
547 |
-
model=model,
|
548 |
-
tokenizer=tokenizer,
|
549 |
-
device=0 if torch.cuda.is_available() else -1,
|
550 |
-
)
|
551 |
-
logging.info("Mistral model loaded successfully.")
|
552 |
-
return pipe
|
553 |
-
except Exception as e:
|
554 |
-
logging.error(f"Error loading Mistral model: {e}")
|
555 |
-
return None
|
556 |
-
|
557 |
-
# Load the model once at the start
|
558 |
-
chat_pipeline = load_model()
|
559 |
-
|
560 |
-
# Function to parse user commands
|
561 |
def parse_command(message: str) -> tuple:
|
562 |
"""
|
563 |
-
Parses the user message to identify if it contains a command.
|
564 |
Returns the command and its parameters if found, else (None, None).
|
565 |
"""
|
|
|
|
|
|
|
|
|
566 |
# Define command patterns
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
|
574 |
-
|
575 |
-
|
|
|
576 |
if match:
|
577 |
-
|
578 |
-
|
|
|
579 |
|
580 |
-
return
|
581 |
|
582 |
# Function to execute parsed commands
|
583 |
def execute_command(command: str, params: dict) -> str:
|
@@ -585,7 +620,7 @@ def execute_command(command: str, params: dict) -> str:
|
|
585 |
Executes the corresponding function based on the command and parameters.
|
586 |
"""
|
587 |
if command == "filter":
|
588 |
-
words =
|
589 |
column = params["column"]
|
590 |
return filter_data(column, words)
|
591 |
elif command == "sort":
|
@@ -609,7 +644,6 @@ def filter_data(column: str, words: list) -> str:
|
|
609 |
"""
|
610 |
try:
|
611 |
storage_location = DEFAULT_FILE_PATH
|
612 |
-
url = "" # Placeholder since filtering isn't URL-specific here
|
613 |
|
614 |
connection = get_db_connection()
|
615 |
if connection:
|
@@ -635,7 +669,8 @@ def filter_data(column: str, words: list) -> str:
|
|
635 |
return f"No records found with words {words} in column '{column}'."
|
636 |
|
637 |
# Save the filtered data to a new CSV
|
638 |
-
|
|
|
639 |
filtered_df.to_csv(filtered_csv, index=False)
|
640 |
logging.info(f"Data filtered on column '{column}' for words {words}.")
|
641 |
return f"Data filtered and saved to {filtered_csv}."
|
@@ -663,7 +698,8 @@ def filter_data(column: str, words: list) -> str:
|
|
663 |
return f"No records found with words {words} in column '{column}'."
|
664 |
|
665 |
# Save the filtered data to a new CSV
|
666 |
-
|
|
|
667 |
filtered_df.to_csv(filtered_csv, index=False)
|
668 |
logging.info(f"Data filtered on column '{column}' for words {words}.")
|
669 |
return f"Data filtered and saved to {filtered_csv}."
|
@@ -678,7 +714,6 @@ def sort_data(column: str, order: str) -> str:
|
|
678 |
"""
|
679 |
try:
|
680 |
storage_location = DEFAULT_FILE_PATH
|
681 |
-
url = "" # Placeholder since sorting isn't URL-specific here
|
682 |
|
683 |
connection = get_db_connection()
|
684 |
if connection:
|
@@ -700,7 +735,8 @@ def sort_data(column: str, order: str) -> str:
|
|
700 |
sorted_df = df.sort_values(by=column, ascending=ascending)
|
701 |
|
702 |
# Save the sorted data to a new CSV
|
703 |
-
|
|
|
704 |
sorted_df.to_csv(sorted_csv, index=False)
|
705 |
logging.info(f"Data sorted on column '{column}' in {order} order.")
|
706 |
return f"Data sorted and saved to {sorted_csv}."
|
@@ -726,7 +762,8 @@ def sort_data(column: str, order: str) -> str:
|
|
726 |
sorted_df = df.sort_values(by=column, ascending=ascending)
|
727 |
|
728 |
# Save the sorted data to a new CSV
|
729 |
-
|
|
|
730 |
sorted_df.to_csv(sorted_csv, index=False)
|
731 |
logging.info(f"Data sorted on column '{column}' in {order} order.")
|
732 |
return f"Data sorted and saved to {sorted_csv}."
|
@@ -988,6 +1025,23 @@ def create_interface() -> gr.Blocks:
|
|
988 |
label="RSS Feed Output", interactive=False, lines=20
|
989 |
)
|
990 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
991 |
# Connect buttons to their respective functions
|
992 |
start_button.click(
|
993 |
fn=start_scraping,
|
@@ -997,6 +1051,7 @@ def create_interface() -> gr.Blocks:
|
|
997 |
scrape_interval,
|
998 |
content_type,
|
999 |
selector,
|
|
|
1000 |
],
|
1001 |
outputs=status_output,
|
1002 |
)
|
@@ -1015,6 +1070,12 @@ def create_interface() -> gr.Blocks:
|
|
1015 |
outputs=rss_output,
|
1016 |
)
|
1017 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
# Connect message submission to the chat interface
|
1019 |
def update_chat(message_input, history, system_msg, max_toks, temp, top_p_val):
|
1020 |
if not message_input.strip():
|
@@ -1046,9 +1107,114 @@ def create_interface() -> gr.Blocks:
|
|
1046 |
|
1047 |
return demo
|
1048 |
|
1049 |
-
#
|
1050 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1051 |
|
|
|
1052 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
1053 |
demo = create_interface()
|
1054 |
-
demo.launch()
|
|
|
|
|
|
|
|
26 |
import xml.etree.ElementTree as ET
|
27 |
import torch
|
28 |
import mysql.connector
|
29 |
+
from mysql.connector import errorcode, pooling
|
30 |
from dotenv import load_dotenv
|
31 |
+
import spacy
|
32 |
+
import unittest
|
33 |
|
34 |
# Load environment variables from .env file
|
35 |
load_dotenv()
|
|
|
39 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
40 |
)
|
41 |
|
42 |
+
# Initialize spaCy
|
43 |
+
nlp = spacy.load("en_core_web_sm")
|
44 |
+
|
45 |
# Define constants
|
46 |
DEFAULT_FILE_PATH = "scraped_data"
|
47 |
PURPOSE = (
|
|
|
54 |
CURRENT_TASK = None
|
55 |
STOP_THREADS = False # Flag to stop scraping threads
|
56 |
|
57 |
+
# Database Pooling Configuration
|
58 |
+
DB_POOL_NAME = "mypool"
|
59 |
+
DB_POOL_SIZE = 5 # Adjust based on expected load
|
60 |
+
|
61 |
+
try:
|
62 |
+
dbconfig = {
|
63 |
+
"host": os.getenv("DB_HOST"),
|
64 |
+
"user": os.getenv("DB_USER"),
|
65 |
+
"password": os.getenv("DB_PASSWORD"),
|
66 |
+
"database": os.getenv("DB_NAME"),
|
67 |
+
}
|
68 |
+
connection_pool = mysql.connector.pooling.MySQLConnectionPool(
|
69 |
+
pool_name=DB_POOL_NAME,
|
70 |
+
pool_size=DB_POOL_SIZE,
|
71 |
+
pool_reset_session=True,
|
72 |
+
**dbconfig
|
73 |
+
)
|
74 |
+
logging.info("Database connection pool created successfully.")
|
75 |
+
except mysql.connector.Error as err:
|
76 |
+
logging.warning(f"Database connection pool creation failed: {err}")
|
77 |
+
connection_pool = None # Will use CSV as fallback
|
78 |
+
|
79 |
+
# Function to get a database connection from the pool
|
80 |
def get_db_connection():
|
81 |
"""
|
82 |
+
Retrieves a connection from the pool. Returns None if pool is not available.
|
|
|
83 |
"""
|
84 |
+
if connection_pool:
|
85 |
+
try:
|
86 |
+
connection = connection_pool.get_connection()
|
87 |
+
if connection.is_connected():
|
88 |
+
return connection
|
89 |
+
except mysql.connector.Error as err:
|
90 |
+
logging.error(f"Error getting connection from pool: {err}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
return None
|
92 |
|
93 |
+
# Initialize Database: Create tables and indexes
|
94 |
def initialize_database():
|
95 |
"""
|
96 |
+
Initializes the database by creating necessary tables and indexes if they do not exist.
|
97 |
"""
|
98 |
connection = get_db_connection()
|
99 |
if connection is None:
|
|
|
114 |
cursor.execute(create_scraped_data_table)
|
115 |
logging.info("Table 'scraped_data' is ready.")
|
116 |
|
117 |
+
# Create indexes for performance
|
118 |
+
create_index_url = "CREATE INDEX IF NOT EXISTS idx_url ON scraped_data(url)"
|
119 |
+
create_index_change = "CREATE INDEX IF NOT EXISTS idx_change_detected ON scraped_data(change_detected)"
|
120 |
+
cursor.execute(create_index_url)
|
121 |
+
cursor.execute(create_index_change)
|
122 |
+
logging.info("Indexes on 'url' and 'change_detected' columns created.")
|
123 |
+
|
124 |
# Create table for action logs
|
125 |
create_action_logs_table = """
|
126 |
CREATE TABLE IF NOT EXISTS action_logs (
|
|
|
133 |
logging.info("Table 'action_logs' is ready.")
|
134 |
|
135 |
except mysql.connector.Error as err:
|
136 |
+
logging.error(f"Error initializing database: {err}")
|
137 |
finally:
|
138 |
cursor.close()
|
139 |
connection.close()
|
140 |
logging.info("Database initialization complete.")
|
141 |
|
142 |
+
# Function to create WebDriver
|
143 |
+
def create_driver(options: Options) -> webdriver.Chrome:
|
144 |
+
"""
|
145 |
+
Initializes and returns a Selenium Chrome WebDriver instance.
|
146 |
+
"""
|
147 |
+
try:
|
148 |
+
driver = webdriver.Chrome(
|
149 |
+
service=Service(ChromeDriverManager().install()), options=options
|
150 |
+
)
|
151 |
+
logging.info("ChromeDriver initialized successfully.")
|
152 |
+
return driver
|
153 |
+
except Exception as exception:
|
154 |
+
logging.error(f"Error initializing ChromeDriver: {exception}")
|
155 |
+
return None
|
156 |
+
|
157 |
+
# Function to log changes to CSV
|
158 |
+
def log_to_csv(storage_location: str, url: str, content_hash: str, change_detected: str):
|
159 |
+
"""
|
160 |
+
Logs the change to a CSV file in the storage_location.
|
161 |
+
"""
|
162 |
+
try:
|
163 |
+
os.makedirs(storage_location, exist_ok=True)
|
164 |
+
csv_file_path = os.path.join(storage_location, f"{urlparse(url).hostname}_changes.csv")
|
165 |
+
file_exists = os.path.isfile(csv_file_path)
|
166 |
+
|
167 |
+
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
|
168 |
+
fieldnames = ["date", "time", "url", "content_hash", "change"]
|
169 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
170 |
+
if not file_exists:
|
171 |
+
writer.writeheader()
|
172 |
+
writer.writerow(
|
173 |
+
{
|
174 |
+
"date": change_detected.split()[0],
|
175 |
+
"time": change_detected.split()[1],
|
176 |
+
"url": url,
|
177 |
+
"content_hash": content_hash,
|
178 |
+
"change": "Content changed",
|
179 |
+
}
|
180 |
+
)
|
181 |
+
logging.info(f"Change detected at {url} on {change_detected} and logged to CSV.")
|
182 |
+
except Exception as e:
|
183 |
+
logging.error(f"Error logging data to CSV: {e}")
|
184 |
+
|
185 |
+
# Function to get initial observation
|
186 |
+
def get_initial_observation(
|
187 |
+
driver: webdriver.Chrome, url: str, content_type: str, selector: str = None
|
188 |
+
) -> str:
|
189 |
+
"""
|
190 |
+
Retrieves the initial content from the URL and returns its MD5 hash.
|
191 |
+
"""
|
192 |
+
try:
|
193 |
+
driver.get(url)
|
194 |
+
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
|
195 |
+
time.sleep(2) # Additional wait for dynamic content
|
196 |
+
|
197 |
+
if content_type == "text":
|
198 |
+
initial_content = driver.page_source
|
199 |
+
elif content_type == "media":
|
200 |
+
if selector:
|
201 |
+
try:
|
202 |
+
elements = WebDriverWait(driver, 5).until(
|
203 |
+
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
|
204 |
+
)
|
205 |
+
initial_content = [element.get_attribute("src") for element in elements]
|
206 |
+
except TimeoutException:
|
207 |
+
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
|
208 |
+
initial_content = []
|
209 |
+
else:
|
210 |
+
elements = driver.find_elements(By.TAG_NAME, "img")
|
211 |
+
initial_content = [element.get_attribute("src") for element in elements]
|
212 |
+
else:
|
213 |
+
initial_content = driver.page_source
|
214 |
+
|
215 |
+
initial_hash = hashlib.md5(str(initial_content).encode("utf-8")).hexdigest()
|
216 |
+
logging.info(f"Initial hash for {url}: {initial_hash}")
|
217 |
+
return initial_hash
|
218 |
+
except Exception as exception:
|
219 |
+
logging.error(f"Error accessing {url}: {exception}")
|
220 |
+
return None
|
221 |
+
|
222 |
# Function to monitor URLs for changes
|
223 |
def monitor_urls(
|
224 |
storage_location: str,
|
|
|
226 |
scrape_interval: int,
|
227 |
content_type: str,
|
228 |
selector: str = None,
|
229 |
+
progress: gr.Progress = None
|
230 |
):
|
231 |
"""
|
232 |
Monitors the specified URLs for changes and logs any detected changes to the database or CSV.
|
|
|
247 |
try:
|
248 |
while not STOP_THREADS:
|
249 |
for url in urls:
|
250 |
+
if STOP_THREADS:
|
251 |
+
break
|
252 |
try:
|
253 |
driver.get(url)
|
254 |
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
|
|
|
301 |
# Fallback to CSV
|
302 |
log_to_csv(storage_location, url, current_hash, date_time_str)
|
303 |
|
304 |
+
# Update progress
|
305 |
+
if progress:
|
306 |
+
progress(1)
|
307 |
except (
|
308 |
NoSuchElementException,
|
309 |
StaleElementReferenceException,
|
|
|
311 |
Exception,
|
312 |
) as e:
|
313 |
logging.error(f"Error accessing {url}: {e}")
|
314 |
+
if progress:
|
315 |
+
progress(1)
|
316 |
time.sleep(scrape_interval * 60) # Wait for the next scrape interval
|
317 |
finally:
|
318 |
driver.quit()
|
319 |
logging.info("ChromeDriver session ended.")
|
320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
# Function to start scraping
|
322 |
def start_scraping(
|
323 |
storage_location: str,
|
|
|
325 |
scrape_interval: int,
|
326 |
content_type: str,
|
327 |
selector: str = None,
|
328 |
+
progress: gr.Progress = None
|
329 |
) -> str:
|
330 |
"""
|
331 |
+
Starts the scraping process in a separate thread with progress indication.
|
332 |
"""
|
333 |
global CURRENT_TASK, HISTORY, STOP_THREADS
|
334 |
|
|
|
343 |
# Initialize database tables
|
344 |
initialize_database()
|
345 |
|
346 |
+
# Log initial observations
|
347 |
+
def log_initial_observations():
|
348 |
+
options = Options()
|
349 |
+
options.add_argument("--headless")
|
350 |
+
options.add_argument("--no-sandbox")
|
351 |
+
options.add_argument("--disable-dev-shm-usage")
|
352 |
|
353 |
+
driver = create_driver(options)
|
354 |
+
if driver is None:
|
355 |
+
return
|
356 |
+
|
357 |
+
for url in url_list:
|
358 |
+
if STOP_THREADS:
|
359 |
+
break
|
360 |
+
try:
|
361 |
+
initial_hash = get_initial_observation(driver, url, content_type, selector)
|
362 |
+
if initial_hash:
|
363 |
+
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
364 |
+
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
|
365 |
+
|
366 |
+
# Attempt to log to database
|
367 |
+
connection = get_db_connection()
|
368 |
+
if connection:
|
369 |
+
try:
|
370 |
+
cursor = connection.cursor()
|
371 |
+
insert_query = """
|
372 |
+
INSERT INTO scraped_data (url, content_hash, change_detected)
|
373 |
+
VALUES (%s, %s, %s)
|
374 |
+
"""
|
375 |
+
cursor.execute(insert_query, (url, initial_hash, date_time_str))
|
376 |
+
connection.commit()
|
377 |
+
logging.info(f"Initial observation logged for {url} in database.")
|
378 |
+
except mysql.connector.Error as err:
|
379 |
+
logging.error(f"Error inserting initial observation into database: {err}")
|
380 |
+
# Fallback to CSV
|
381 |
+
log_to_csv(storage_location, url, initial_hash, date_time_str)
|
382 |
+
finally:
|
383 |
+
cursor.close()
|
384 |
+
connection.close()
|
385 |
+
else:
|
386 |
# Fallback to CSV
|
387 |
+
log_to_csv(storage_location, url, initial_hash, date_time_str)
|
388 |
+
except Exception as e:
|
389 |
+
HISTORY.append(f"Error accessing {url}: {e}")
|
390 |
+
logging.error(f"Error accessing {url}: {e}")
|
391 |
+
driver.quit()
|
|
|
|
|
392 |
|
393 |
+
# Start logging initial observations
|
394 |
+
initial_thread = threading.Thread(target=log_initial_observations, daemon=True)
|
395 |
+
initial_thread.start()
|
|
|
|
|
396 |
|
397 |
+
# Start the monitoring thread with progress
|
398 |
monitor_thread = threading.Thread(
|
399 |
target=monitor_urls,
|
400 |
+
args=(storage_location, url_list, scrape_interval, content_type, selector, progress),
|
401 |
daemon=True,
|
402 |
)
|
403 |
monitor_thread.start()
|
|
|
567 |
logging.error(f"Error generating RSS feed for {url}: {e}")
|
568 |
return f"Error generating RSS feed for {url}: {e}"
|
569 |
|
570 |
+
# Function to parse user commands using spaCy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
def parse_command(message: str) -> tuple:
|
572 |
"""
|
573 |
+
Parses the user message using spaCy to identify if it contains a command.
|
574 |
Returns the command and its parameters if found, else (None, None).
|
575 |
"""
|
576 |
+
doc = nlp(message.lower())
|
577 |
+
command = None
|
578 |
+
params = {}
|
579 |
+
|
580 |
# Define command patterns
|
581 |
+
if "filter" in message.lower():
|
582 |
+
# Example: "Filter apples, oranges in column Description"
|
583 |
+
match = re.search(r"filter\s+([\w\s,]+)\s+in\s+column\s+(\w+)", message, re.IGNORECASE)
|
584 |
+
if match:
|
585 |
+
words = [word.strip() for word in match.group(1).split(",")]
|
586 |
+
column = match.group(2)
|
587 |
+
command = "filter"
|
588 |
+
params = {"words": words, "column": column}
|
589 |
+
|
590 |
+
elif "sort" in message.lower():
|
591 |
+
# Example: "Sort Price ascending"
|
592 |
+
match = re.search(r"sort\s+(\w+)\s+(ascending|descending)", message, re.IGNORECASE)
|
593 |
+
if match:
|
594 |
+
column = match.group(1)
|
595 |
+
order = match.group(2)
|
596 |
+
command = "sort"
|
597 |
+
params = {"column": column, "order": order}
|
598 |
+
|
599 |
+
elif "export to csv as" in message.lower():
|
600 |
+
# Example: "Export to CSV as filtered_data.csv"
|
601 |
+
match = re.search(r"export\s+to\s+csv\s+as\s+([\w\-]+\.csv)", message, re.IGNORECASE)
|
602 |
+
if match:
|
603 |
+
filename = match.group(1)
|
604 |
+
command = "export"
|
605 |
+
params = {"filename": filename}
|
606 |
|
607 |
+
elif "log action" in message.lower():
|
608 |
+
# Example: "Log action Filtered data for specific fruits"
|
609 |
+
match = re.search(r"log\s+action\s+(.+)", message, re.IGNORECASE)
|
610 |
if match:
|
611 |
+
action = match.group(1)
|
612 |
+
command = "log"
|
613 |
+
params = {"action": action}
|
614 |
|
615 |
+
return command, params
|
616 |
|
617 |
# Function to execute parsed commands
|
618 |
def execute_command(command: str, params: dict) -> str:
|
|
|
620 |
Executes the corresponding function based on the command and parameters.
|
621 |
"""
|
622 |
if command == "filter":
|
623 |
+
words = params["words"]
|
624 |
column = params["column"]
|
625 |
return filter_data(column, words)
|
626 |
elif command == "sort":
|
|
|
644 |
"""
|
645 |
try:
|
646 |
storage_location = DEFAULT_FILE_PATH
|
|
|
647 |
|
648 |
connection = get_db_connection()
|
649 |
if connection:
|
|
|
669 |
return f"No records found with words {words} in column '{column}'."
|
670 |
|
671 |
# Save the filtered data to a new CSV
|
672 |
+
timestamp = int(time.time())
|
673 |
+
filtered_csv = os.path.join(storage_location, f"filtered_data_{timestamp}.csv")
|
674 |
filtered_df.to_csv(filtered_csv, index=False)
|
675 |
logging.info(f"Data filtered on column '{column}' for words {words}.")
|
676 |
return f"Data filtered and saved to {filtered_csv}."
|
|
|
698 |
return f"No records found with words {words} in column '{column}'."
|
699 |
|
700 |
# Save the filtered data to a new CSV
|
701 |
+
timestamp = int(time.time())
|
702 |
+
filtered_csv = latest_csv.replace(".csv", f"_filtered_{timestamp}.csv")
|
703 |
filtered_df.to_csv(filtered_csv, index=False)
|
704 |
logging.info(f"Data filtered on column '{column}' for words {words}.")
|
705 |
return f"Data filtered and saved to {filtered_csv}."
|
|
|
714 |
"""
|
715 |
try:
|
716 |
storage_location = DEFAULT_FILE_PATH
|
|
|
717 |
|
718 |
connection = get_db_connection()
|
719 |
if connection:
|
|
|
735 |
sorted_df = df.sort_values(by=column, ascending=ascending)
|
736 |
|
737 |
# Save the sorted data to a new CSV
|
738 |
+
timestamp = int(time.time())
|
739 |
+
sorted_csv = os.path.join(storage_location, f"sorted_data_{column}_{order.lower()}_{timestamp}.csv")
|
740 |
sorted_df.to_csv(sorted_csv, index=False)
|
741 |
logging.info(f"Data sorted on column '{column}' in {order} order.")
|
742 |
return f"Data sorted and saved to {sorted_csv}."
|
|
|
762 |
sorted_df = df.sort_values(by=column, ascending=ascending)
|
763 |
|
764 |
# Save the sorted data to a new CSV
|
765 |
+
timestamp = int(time.time())
|
766 |
+
sorted_csv = latest_csv.replace(".csv", f"_sorted_{order.lower()}_{timestamp}.csv")
|
767 |
sorted_df.to_csv(sorted_csv, index=False)
|
768 |
logging.info(f"Data sorted on column '{column}' in {order} order.")
|
769 |
return f"Data sorted and saved to {sorted_csv}."
|
|
|
1025 |
label="RSS Feed Output", interactive=False, lines=20
|
1026 |
)
|
1027 |
|
1028 |
+
# Historical Data View
|
1029 |
+
with gr.Row():
|
1030 |
+
historical_view_url = gr.Textbox(
|
1031 |
+
label="Select URL for Historical Data",
|
1032 |
+
placeholder="https://example.com",
|
1033 |
+
)
|
1034 |
+
historical_button = gr.Button("View Historical Data")
|
1035 |
+
historical_output = gr.Dataframe(
|
1036 |
+
headers=["ID", "URL", "Content Hash", "Change Detected"],
|
1037 |
+
label="Historical Data",
|
1038 |
+
interactive=False
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
# Progress Indicator
|
1042 |
+
with gr.Row():
|
1043 |
+
progress = gr.Progress(label="Scraping Progress")
|
1044 |
+
|
1045 |
# Connect buttons to their respective functions
|
1046 |
start_button.click(
|
1047 |
fn=start_scraping,
|
|
|
1051 |
scrape_interval,
|
1052 |
content_type,
|
1053 |
selector,
|
1054 |
+
progress,
|
1055 |
],
|
1056 |
outputs=status_output,
|
1057 |
)
|
|
|
1070 |
outputs=rss_output,
|
1071 |
)
|
1072 |
|
1073 |
+
historical_button.click(
|
1074 |
+
fn=display_historical_data,
|
1075 |
+
inputs=[storage_location, historical_view_url],
|
1076 |
+
outputs=historical_output,
|
1077 |
+
)
|
1078 |
+
|
1079 |
# Connect message submission to the chat interface
|
1080 |
def update_chat(message_input, history, system_msg, max_toks, temp, top_p_val):
|
1081 |
if not message_input.strip():
|
|
|
1107 |
|
1108 |
return demo
|
1109 |
|
1110 |
+
# Function to display historical data
|
1111 |
+
def display_historical_data(storage_location: str, url: str):
|
1112 |
+
"""
|
1113 |
+
Retrieves and displays historical scraping data for a given URL.
|
1114 |
+
"""
|
1115 |
+
try:
|
1116 |
+
connection = get_db_connection()
|
1117 |
+
if connection:
|
1118 |
+
try:
|
1119 |
+
cursor = connection.cursor(dictionary=True)
|
1120 |
+
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
|
1121 |
+
cursor.execute(query, (url,))
|
1122 |
+
results = cursor.fetchall()
|
1123 |
+
|
1124 |
+
if not results:
|
1125 |
+
return pd.DataFrame()
|
1126 |
+
|
1127 |
+
df = pd.DataFrame(results)
|
1128 |
+
cursor.close()
|
1129 |
+
connection.close()
|
1130 |
+
return df
|
1131 |
+
except mysql.connector.Error as err:
|
1132 |
+
logging.error(f"Error fetching historical data from database: {err}")
|
1133 |
+
# Fallback to CSV
|
1134 |
+
else:
|
1135 |
+
logging.info("No database connection. Fetching historical data from CSV.")
|
1136 |
+
|
1137 |
+
# Fallback to CSV
|
1138 |
+
hostname = urlparse(url).hostname
|
1139 |
+
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
|
1140 |
+
if os.path.exists(csv_path):
|
1141 |
+
df = pd.read_csv(csv_path)
|
1142 |
+
return df
|
1143 |
+
else:
|
1144 |
+
return pd.DataFrame()
|
1145 |
+
except Exception as e:
|
1146 |
+
logging.error(f"Error fetching historical data for {url}: {e}")
|
1147 |
+
return pd.DataFrame()
|
1148 |
+
|
1149 |
+
# Function to load the Mistral model
|
1150 |
+
def load_model():
|
1151 |
+
"""
|
1152 |
+
Loads the Mistral model and tokenizer once and returns the pipeline.
|
1153 |
+
"""
|
1154 |
+
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
1155 |
+
try:
|
1156 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
1157 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
1158 |
+
pipe = pipeline(
|
1159 |
+
"text-generation",
|
1160 |
+
model=model,
|
1161 |
+
tokenizer=tokenizer,
|
1162 |
+
device=0 if torch.cuda.is_available() else -1,
|
1163 |
+
)
|
1164 |
+
logging.info("Mistral model loaded successfully.")
|
1165 |
+
return pipe
|
1166 |
+
except Exception as e:
|
1167 |
+
logging.error(f"Error loading Mistral model: {e}")
|
1168 |
+
return None
|
1169 |
+
|
1170 |
+
# Load the model once at the start
|
1171 |
+
chat_pipeline = load_model()
|
1172 |
+
|
1173 |
+
# Automated Testing using unittest
|
1174 |
+
class TestApp(unittest.TestCase):
|
1175 |
+
def test_parse_command_filter(self):
|
1176 |
+
command = "Filter apples, oranges in column Description"
|
1177 |
+
parsed_command = parse_command(command)
|
1178 |
+
self.assertEqual(parsed_command[0], "filter")
|
1179 |
+
self.assertListEqual(parsed_command[1]["words"], ["apples", "oranges"])
|
1180 |
+
self.assertEqual(parsed_command[1]["column"], "Description")
|
1181 |
+
|
1182 |
+
def test_parse_command_sort(self):
|
1183 |
+
command = "Sort Price ascending"
|
1184 |
+
parsed_command = parse_command(command)
|
1185 |
+
self.assertEqual(parsed_command[0], "sort")
|
1186 |
+
self.assertEqual(parsed_command[1]["column"], "Price")
|
1187 |
+
self.assertEqual(parsed_command[1]["order"], "ascending")
|
1188 |
+
|
1189 |
+
def test_parse_command_export(self):
|
1190 |
+
command = "Export to CSV as filtered_data.csv"
|
1191 |
+
parsed_command = parse_command(command)
|
1192 |
+
self.assertEqual(parsed_command[0], "export")
|
1193 |
+
self.assertEqual(parsed_command[1]["filename"], "filtered_data.csv")
|
1194 |
+
|
1195 |
+
def test_parse_command_log(self):
|
1196 |
+
command = "Log action Filtered data for specific fruits"
|
1197 |
+
parsed_command = parse_command(command)
|
1198 |
+
self.assertEqual(parsed_command[0], "log")
|
1199 |
+
self.assertEqual(parsed_command[1]["action"], "Filtered data for specific fruits")
|
1200 |
+
|
1201 |
+
def test_database_connection(self):
|
1202 |
+
connection = get_db_connection()
|
1203 |
+
# Connection may be None if not configured; adjust the test accordingly
|
1204 |
+
if connection:
|
1205 |
+
self.assertTrue(connection.is_connected())
|
1206 |
+
connection.close()
|
1207 |
+
else:
|
1208 |
+
self.assertIsNone(connection)
|
1209 |
|
1210 |
+
# Main execution
|
1211 |
if __name__ == "__main__":
|
1212 |
+
# Initialize database
|
1213 |
+
initialize_database()
|
1214 |
+
|
1215 |
+
# Create and launch Gradio interface
|
1216 |
demo = create_interface()
|
1217 |
+
demo.launch()
|
1218 |
+
|
1219 |
+
# Run automated tests
|
1220 |
+
unittest.main(argv=[''], exit=False)
|