acecalisto3 commited on
Commit
e5e0c8c
·
verified ·
1 Parent(s): d6eab59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -232
app.py CHANGED
@@ -1,17 +1,16 @@
1
  import streamlit as st
2
  from streamlit_ace import st_ace
3
- from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
4
  import os
5
  import subprocess
6
  import black
7
  from pylint import lint
8
  from io import StringIO
9
  import sys
10
- import torch
11
- from huggingface_hub import hf_hub_url, cached_download, HfApi
12
  import re
13
  from typing import List, Dict
14
  from streamlit_jupyter import StreamlitPatcher, tqdm
 
15
 
16
  # This line should be at the top of your script
17
  StreamlitPatcher().jupyter() # This patches Streamlit to work in Jupyter
@@ -39,169 +38,11 @@ if 'available_agents' not in st.session_state:
39
  # AI Guide Toggle
40
  ai_guide_level = st.sidebar.radio("AI Guide Level", ["Full Assistance", "Partial Assistance", "No Assistance"])
41
 
42
- class TextGenerationTool:
43
- def __init__(self, llm: str):
44
- self.llm = llm
45
- self.tokenizer = AutoTokenizer.from_pretrained(llm)
46
- self.model = AutoModelForCausalLM.from_pretrained(llm)
47
-
48
- def generate_text(self, prompt: str, max_length: int = 50) -> str:
49
- inputs = self.tokenizer(prompt, return_tensors="pt")
50
- outputs = self.model.generate(**inputs, max_length=max_length)
51
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
52
-
53
- class AIAgent:
54
- def __init__(self, name: str, description: str, skills: List[str], llm: str):
55
- self.name = name
56
- self.description = description
57
- self.skills = skills
58
- self.text_gen_tool = TextGenerationTool(llm)
59
- self._hf_api = HfApi() # Initialize HfApi here
60
-
61
- def generate_agent_response(self, prompt: str) -> str:
62
- return self.text_gen_tool.generate_text(prompt)
63
-
64
- def create_agent_prompt(self) -> str:
65
- skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
66
- agent_prompt = f"""
67
- As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
68
- {skills_str}
69
- I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
70
- """
71
- return agent_prompt
72
-
73
- def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict],
74
- project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
75
- summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
76
- summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
77
- next_step = "Based on the current state, the next logical step is to implement the main application logic."
78
- return summary, next_step
79
-
80
- def deploy_built_space_to_hf(self, project_name: str) -> str:
81
- space_content = generate_space_content(project_name)
82
- repository = self._hf_api.create_repo(
83
- repo_id=project_name,
84
- private=True,
85
- token=hf_token,
86
- exist_ok=True,
87
- space_sdk="streamlit"
88
- )
89
- self._hf_api.upload_file(
90
- path_or_fileobj=space_content,
91
- path_in_repo="app.py",
92
- repo_id=project_name,
93
- repo_type="space",
94
- token=hf_token
95
- )
96
- return repository.name
97
-
98
- def has_valid_hf_token(self) -> bool:
99
- return self._hf_api.whoami(token=hf_token) is not None
100
-
101
- def process_input(input_text: str) -> str:
102
- chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True)
103
- response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
104
- return response
105
-
106
- def run_code(code: str) -> str:
107
- try:
108
- result = subprocess.run(code, shell=True, capture_output=True, text=True)
109
- return result.stdout
110
- except Exception as e:
111
- return str(e)
112
-
113
- def workspace_interface(project_name: str) -> str:
114
- project_path = os.path.join(PROJECT_ROOT, project_name)
115
- if not os.path.exists(project_path):
116
- os.makedirs(project_path)
117
- st.session_state.workspace_projects[project_name] = {'files': []}
118
- return f"Project '{project_name}' created successfully."
119
- else:
120
- return f"Project '{project_name}' already exists."
121
-
122
- def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
123
- project_path = os.path.join(PROJECT_ROOT, project_name)
124
- if not os.path.exists(project_path):
125
- return f"Project '{project_name}' does not exist."
126
-
127
- file_path = os.path.join(project_path, file_name)
128
- with open(file_path, "w") as file:
129
- file.write(code)
130
- st.session_state.workspace_projects[project_name]['files'].append(file_name)
131
- return f"Code added to '{file_name}' in project '{project_name}'."
132
-
133
- def display_chat_history(chat_history: List[tuple[str, str]]) -> str:
134
- return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
135
-
136
- def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str:
137
- return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
138
-
139
- def generate_space_content(project_name: str) -> str:
140
- # Logic to generate the Streamlit app content based on project_name
141
- # ... (This is where you'll need to implement the actual code generation)
142
- return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')"
143
-
144
- # Function to display the AI Guide chat
145
- def display_ai_guide_chat(chat_history: List[tuple[str, str]]):
146
- st.markdown("<div class='chat-history'>", unsafe_allow_html=True)
147
- for user_message, agent_message in chat_history:
148
- st.markdown(f"<div class='chat-message user'>{user_message}</div>", unsafe_allow_html=True)
149
- st.markdown(f"<div class='chat-message agent'>{agent_message}</div>", unsafe_allow_html=True)
150
- st.markdown("</div>", unsafe_allow_html=True)
151
-
152
  # Load the CodeGPT tokenizer explicitly
153
  code_generator_tokenizer = AutoTokenizer.from_pretrained("microsoft/CodeGPT-small-py", clean_up_tokenization_spaces=True)
154
  # Load the CodeGPT model for code completion
155
  code_generator = pipeline("text-generation", model="microsoft/CodeGPT-small-py", tokenizer=code_generator_tokenizer)
156
 
157
- def analyze_code(code: str) -> List[str]:
158
- hints = []
159
-
160
- # Example pointer: Suggest using list comprehensions
161
- if re.search(r'for .* in .*:\n\s+.*\.append\(', code):
162
- hints.append("Consider using a list comprehension instead of a loop for appending to a list.")
163
-
164
- # Example pointer: Recommend using f-strings for string formatting
165
- if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code):
166
- hints.append("Consider using f-strings for cleaner and more efficient string formatting.")
167
-
168
- # Example pointer: Avoid using global variables
169
- if re.search(r'\bglobal\b', code):
170
- hints.append("Avoid using global variables. Consider passing parameters or using classes.")
171
-
172
- # Example pointer: Recommend using `with` statement for file operations
173
- if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code):
174
- hints.append("Consider using the `with` statement when opening files to ensure proper resource management.")
175
-
176
- return hints
177
-
178
- def get_code_completion(prompt: str) -> str:
179
- # Generate code completion based on the current code input
180
- # Use max_new_tokens instead of max_length
181
- completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1)
182
- return completions[0]['generated_text']
183
-
184
- def lint_code(code: str) -> List[str]:
185
- # Capture pylint output
186
- pylint_output = StringIO()
187
- sys.stdout = pylint_output
188
-
189
- # Run pylint on the provided code
190
- pylint.lint.Run(['--from-stdin'], do_exit=False, input=code)
191
-
192
- # Reset stdout
193
- sys.stdout = sys.__stdout__
194
-
195
- # Extract pylint messages
196
- messages = pylint_output.getvalue().splitlines()
197
-
198
- return messages
199
-
200
- def format_code(code: str) -> str:
201
- # Format code using Black
202
- formatted_code = black.format_str(code, mode=black.FileMode())
203
- return formatted_code
204
-
205
  def main():
206
  st.title("Streamlit Workspace")
207
 
@@ -266,94 +107,52 @@ def main():
266
  ))
267
  elif ai_guide_level == "Partial Assistance":
268
  guide_chat_history.append((
269
- "How can I read data from a CSV file in Streamlit?",
270
- "You can use the `pandas` library to read the CSV file and then use `streamlit.write()` to display it."
271
  ))
 
272
  display_ai_guide_chat(guide_chat_history)
273
 
274
  with workspace_tabs[1]:
275
  # Tool Box Tab
276
  st.subheader("Tool Box")
277
- tool_tabs = st.tabs(["Code Editor", "Terminal", "Code Analysis"])
 
 
 
278
 
279
- with tool_tabs[0]:
280
- # Code Editor Tab
281
- st.subheader("Code Editor")
282
- code_editor = st_ace(
283
- placeholder="Write your code here...",
284
- height=300,
285
- theme="monokai",
286
- key="code_editor",
287
- language="python",
288
- auto_update=True
289
- )
290
 
291
- st.button("Run Code", on_click=lambda: st.write(run_code(code_editor)))
 
 
292
 
293
- # Code Completion
294
- st.subheader("Code Completion")
295
- completion_prompt = st.text_area("Enter code for completion:")
296
- if completion_prompt:
297
- completed_code = get_code_completion(completion_prompt)
298
- st.write(f"**Completion:** {completed_code}")
299
 
300
- with tool_tabs[1]:
301
- # Terminal Tab
302
- st.subheader("Terminal")
303
- terminal_input = st.text_input("Enter a command:")
304
-
305
- if terminal_input:
306
- st.session_state.terminal_history.append(terminal_input)
307
- st.write(run_code(terminal_input))
308
- terminal_input = "" # Clear the input field
309
-
310
- # Display terminal history
311
- st.markdown("\n".join(st.session_state.terminal_history))
312
-
313
- with tool_tabs[2]:
314
- # Code Analysis Tab
315
- st.subheader("Code Analysis")
316
- code_to_analyze = st.text_area("Enter code to analyze:")
317
- if code_to_analyze:
318
- # Analyze code
319
- analysis_results = analyze_code(code_to_analyze)
320
- if analysis_results:
321
- st.write("**Code Analysis Results:**")
322
- for hint in analysis_results:
323
- st.write(f"- {hint}")
324
- else:
325
- st.write("No code analysis suggestions found.")
326
-
327
- # Lint code
328
- lint_results = lint_code(code_to_analyze)
329
- if lint_results:
330
- st.write("**Linting Results:**")
331
- for message in lint_results:
332
- st.write(f"- {message}")
333
- else:
334
- st.write("No linting issues found.")
335
-
336
- # Format code
337
- formatted_code = format_code(code_to_analyze)
338
- st.write("**Formatted Code:**")
339
- st.code(formatted_code, language="python")
340
 
341
  with workspace_tabs[2]:
342
  # Projects Tab
343
  st.subheader("Projects")
344
- project_name = st.text_input("Enter project name:")
345
  if st.button("Create Project"):
346
- st.write(workspace_interface(project_name))
 
347
 
348
- # Display existing projects
349
- st.markdown(display_workspace_projects(st.session_state.workspace_projects))
 
 
 
350
 
351
- # Add code to a project
352
- selected_project = st.selectbox("Select a project", list(st.session_state.workspace_projects.keys()))
353
- code_to_add = st.text_area("Enter code to add:")
354
- file_name = st.text_input("Enter file name:")
355
- if st.button("Add Code"):
356
- st.write(add_code_to_workspace(selected_project, code_to_add, file_name))
357
 
358
  if __name__ == "__main__":
359
  main()
 
1
  import streamlit as st
2
  from streamlit_ace import st_ace
3
+ from transformers import pipeline, AutoTokenizer
4
  import os
5
  import subprocess
6
  import black
7
  from pylint import lint
8
  from io import StringIO
9
  import sys
 
 
10
  import re
11
  from typing import List, Dict
12
  from streamlit_jupyter import StreamlitPatcher, tqdm
13
+ from agents import TextGenerationTool, AIAgent, process_input, run_code, workspace_interface, add_code_to_workspace, display_chat_history, display_workspace_projects, generate_space_content, analyze_code, get_code_completion, lint_code, format_code
14
 
15
  # This line should be at the top of your script
16
  StreamlitPatcher().jupyter() # This patches Streamlit to work in Jupyter
 
38
  # AI Guide Toggle
39
  ai_guide_level = st.sidebar.radio("AI Guide Level", ["Full Assistance", "Partial Assistance", "No Assistance"])
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  # Load the CodeGPT tokenizer explicitly
42
  code_generator_tokenizer = AutoTokenizer.from_pretrained("microsoft/CodeGPT-small-py", clean_up_tokenization_spaces=True)
43
  # Load the CodeGPT model for code completion
44
  code_generator = pipeline("text-generation", model="microsoft/CodeGPT-small-py", tokenizer=code_generator_tokenizer)
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  def main():
47
  st.title("Streamlit Workspace")
48
 
 
107
  ))
108
  elif ai_guide_level == "Partial Assistance":
109
  guide_chat_history.append((
110
+ "I'm building a Streamlit app to display data from a CSV file.",
111
+ "Great! Let's start by creating a new project in the workspace."
112
  ))
113
+
114
  display_ai_guide_chat(guide_chat_history)
115
 
116
  with workspace_tabs[1]:
117
  # Tool Box Tab
118
  st.subheader("Tool Box")
119
+ code_input = st_ace(language='python', theme='monokai', key='code_input')
120
+ if st.button("Run Code"):
121
+ output = run_code(code_input)
122
+ st.text_area("Output", output, height=200)
123
 
124
+ if st.button("Analyze Code"):
125
+ hints = analyze_code(code_input)
126
+ st.text_area("Hints", "\n".join(hints), height=200)
 
 
 
 
 
 
 
 
127
 
128
+ if st.button("Format Code"):
129
+ formatted_code = format_code(code_input)
130
+ st_ace(value=formatted_code, language='python', theme='monokai', key='formatted_code')
131
 
132
+ if st.button("Lint Code"):
133
+ lint_messages = lint_code(code_input)
134
+ st.text_area("Lint Messages", "\n".join(lint_messages), height=200)
 
 
 
135
 
136
+ if st.button("Get Code Completion"):
137
+ completion = get_code_completion(code_input)
138
+ st_ace(value=completion, language='python', theme='monokai', key='code_completion')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
  with workspace_tabs[2]:
141
  # Projects Tab
142
  st.subheader("Projects")
143
+ project_name = st.text_input("Project Name")
144
  if st.button("Create Project"):
145
+ message = workspace_interface(project_name)
146
+ st.write(message)
147
 
148
+ file_name = st.text_input("File Name")
149
+ code_content = st_ace(language='python', theme='monokai', key='code_content')
150
+ if st.button("Add Code to Project"):
151
+ message = add_code_to_workspace(project_name, code_content, file_name)
152
+ st.write(message)
153
 
154
+ st.subheader("Workspace Projects")
155
+ st.markdown(display_workspace_projects(st.session_state.workspace_projects))
 
 
 
 
156
 
157
  if __name__ == "__main__":
158
  main()