0shotTest / app.py
acecalisto3's picture
Update app.py
83c7399 verified
raw
history blame
12.7 kB
import os
import subprocess
import logging
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
import torch
from datetime import datetime
from huggingface_hub import hf_hub_url, cached_download, HfApi
from dotenv import load_dotenv
# Constants
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
AVAILABLE_CODE_GENERATIVE_MODELS = [
"bigcode/starcoder", # Popular and powerful
"Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
"microsoft/CodeGPT-small", # Smaller, good for quick tasks
"google/flan-t5-xl", # Powerful, good for complex tasks
"facebook/bart-large-cnn", # Good for text-to-code tasks
]
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HUGGING_FACE_API_KEY")
# Initialize logger
logging.basicConfig(level=logging.INFO)
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
# Load pre-trained RAG retriever
rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
# Load pre-trained chat model
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
def process_input(user_input):
# Input pipeline: Tokenize and preprocess user input
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
# RAG model: Generate response
output = rag_retriever(input_ids, attention_mask=attention_mask)
response = output.generator_outputs[0].sequences[0]
# Chat model: Refine response
chat_input = tokenizer(response, return_tensors="pt")
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
output = chat_model(**chat_input)
refined_response = output.sequences[0]
# Output pipeline: Return final response
return refined_response
def workspace_interface(project_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if os.path.exists(project_path):
return f"Project '{project_name}' already exists."
else:
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {'files': []}
return f"Project '{project_name}' created successfully."
def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project '{project_name}' does not exist."
file_path = os.path.join(project_path, file_name)
try:
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Code added to '{file_name}' in project '{project_name}'."
except Exception as e:
logging.error(f"Error adding code: {file_name}: {e}")
return f"Error adding code: {file_name}"
def run_code(command, project_name=None):
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return result.stdout
def display_chat_history(history):
chat_history = ""
for user_input, response in history:
chat_history += f"User: {user_input}\nAgent: {response}\n\n"
return chat_history
def display_workspace_projects(projects):
workspace_projects = ""
for project, details in projects.items():
workspace_projects += f"Project: {project}\nFiles:\n"
for file in details['files']:
workspace_projects += f" - {file}\n"
return workspace_projects
def download_models():
for model in AVAILABLE_CODE_GENERATIVE_MODELS:
try:
cached_model = cached_download(model)
logging.info(f"Downloaded model '{model}' successfully.")
except Exception as e:
logging.error(f"Error downloading model '{model}': {e}")
def deploy_space_to_hf(project_name, hf_token):
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
files = get_built_space_files()
commit_response = deploy_to_git(project_name, repository_name, files)
if commit_response:
publish_space(repository_name, hf_token)
return f"Space '{repository_name}' deployed successfully."
else:
return "Failed to commit changes to Space."
def get_built_space_files():
projects = st.session_state.workspace_projects
files = []
for project in projects.values():
for file in project['files']:
file_path = os.path.join(PROJECT_ROOT, project['project_name'], file)
with open(file_path, "rb") as file:
files.append(file.read())
return files
def deploy_to_git(project_name, repository_name, files):
project_path = os.path.join(PROJECT_ROOT, project_name)
git_repo_url = hf_hub_url(repository_name)
git = subprocess.Popen(["git", "init"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
git = subprocess.Popen(["git", "add", "-A"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
for file in files:
filename = "temp.txt"
with open("temp.txt", "wb") as temp_file:
temp_file.write(file)
git = subprocess.Popen(["git", "add", filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
os.remove("temp.txt")
git = subprocess.Popen(["git", "commit", "-m", "Initial commit"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
return git.returncode == 0
def publish_space(repository_name, hf_token):
api = HfApi(token=hf_token)
api.create_model(repository_name, files=[], push_to_hub=True)
def handle_autonomous_build():
if not st.session_state.workspace_projects or not st.session_state.available_agents:
st.error("No projects or agents available to build.")
return
project_name = st.session_state.workspace_projects.keys()[0]
selected_agent = st.session_state.available_agents[0]
code_idea = st.session_state.current_state["workspace_chat"]["user_input"]
code_generative_model = next((model for model in AVAILABLE_CODE_GENERATIVE_MODELS if model in st.session_state.current_state["toolbox"]["selected_models"]), None)
if not code_generative_model:
st.error("No code-generative model selected.")
return
logging.info(f"Building project '{project_name}' with agent '{selected_agent}' and model '{code_generative_model}'.")
try:
# TODO: Add code to run the build process here
# This could include generating code, running it, and updating the workspace projects
# The build process should also update the UI with the build summary and next steps
summary, next_step = build_project(project_name, selected_agent, code_idea, code_generative_model)
st.write(f"Build summary: {summary}")
st.write(f"Next step: {next_step}")
if next_step == "Deploy to Hugging Face Hub":
deploy_response = deploy_space_to_hf(project_name, HF_TOKEN)
st.write(deploy_response)
except Exception as e:
logging.error(f"Error during build process: {e}")
st.error("Error during build process.")
def build_project(project_name, agent, code_idea, code_generative_model):
# TODO: Add code to build the project here
# This could include generating code, running it, and updating the workspace projects
# The build process should also return a summary and next step
summary = "Project built successfully."
next_step = ""
return summary, next_step
def main():
# Initialize the app
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Agent Creator":
# AI Agent Creator
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
skills = text_input.split('\n')
try:
agent = AIAgent(agent_name, "AI agent created from text input", skills)
st.session_state.available_agents.append(agent_name)
st.success(f"Agent '{agent_name}' created and saved successfully.")
except Exception as e:
st.error(f"Error creating agent: {e}")
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
response = process_input(chat_input)
st.session_state.chat_history.append((chat_input, response))
st.write(f"CodeCraft: {response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
output = run_code(terminal_input)
st.session_state.terminal_history.append((terminal_input, output))
st.code(output, language="bash")
# Project Management
st.subheader("Project Management")
project_name_input = st.text_input("Enter Project Name:")
if st.button("Create Project"):
status = workspace_interface(project_name_input)
st.write(status)
code_to_add = st.text_area("Enter Code to Add to Workspace:", height=150)
file_name_input = st.text_input("Enter File Name (e.g., 'app.py'):")
if st.button("Add Code"):
status = add_code_to_workspace(project_name_input, code_to_add, file_name_input)
st.write(status)
# Display Chat History
st.subheader("Chat History")
chat_history = display_chat_history(st.session_state.chat_history)
st.text_area("Chat History", value=chat_history, height=200)
# Display Workspace Projects
st.subheader("Workspace Projects")
workspace_projects = display_workspace_projects(st.session_state.workspace_projects)
st.text_area("Workspace Projects", value=workspace_projects, height=200)
# Download and deploy models
if st.button("Download and Deploy Models"):
download_models()
st.info("Models downloaded and deployed.")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Chat Interface with AI Agents
st.subheader("Chat with AI Agents")
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
response = process_input(agent_chat_input)
st.session_state.chat_history.append((agent_chat_input, response))
st.write(f"{selected_agent}: {response}")
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
if st.button("Generate Code"):
generated_code = run_code(code_idea)
st.code(generated_code, language="python")
# Autonomous build process
if st.button("Automate Build Process"):
handle_autonomous_build()
if __name__ == "__main__":
main()