starsaround commited on
Commit
1b9c6eb
·
1 Parent(s): d4e84cf

Upload 204 files

Browse files
g4f/Provider/Providers/Ails.py CHANGED
@@ -37,9 +37,11 @@ class Utils:
37
  n = e % 10
38
  r = n + 1 if n % 2 == 0 else n
39
  return str(e - n + r)
 
 
 
40
 
41
-
42
- def _create_completion(model: str, messages: list, temperature: float = 0.6, stream: bool = False, **kwargs):
43
 
44
  headers = {
45
  'authority': 'api.caipacity.com',
@@ -47,7 +49,7 @@ def _create_completion(model: str, messages: list, temperature: float = 0.6, str
47
  'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
48
  'authorization': 'Bearer free',
49
  'client-id': str(uuid.uuid4()),
50
- 'client-v': '0.1.249',
51
  'content-type': 'application/json',
52
  'origin': 'https://ai.ls',
53
  'referer': 'https://ai.ls/',
@@ -90,4 +92,4 @@ def _create_completion(model: str, messages: list, temperature: float = 0.6, str
90
  yield token
91
 
92
  params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
93
- '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
 
37
  n = e % 10
38
  r = n + 1 if n % 2 == 0 else n
39
  return str(e - n + r)
40
+ def getV():
41
+ crossref = requests.get("https://ai.ls"+ requests.get("https://ai.ls/?chat=1").text.split('crossorigin href="')[1].split('"')[0]).text.split('G4="')[1].split('"')[0]
42
+ return crossref
43
 
44
+ def _create_completion(model: str, messages: list, stream: bool = False, temperature: float = 0.6, **kwargs):
 
45
 
46
  headers = {
47
  'authority': 'api.caipacity.com',
 
49
  'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
50
  'authorization': 'Bearer free',
51
  'client-id': str(uuid.uuid4()),
52
+ 'client-v': Utils.getV(),
53
  'content-type': 'application/json',
54
  'origin': 'https://ai.ls',
55
  'referer': 'https://ai.ls/',
 
92
  yield token
93
 
94
  params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
95
+ '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
g4f/Provider/Providers/Bing.py CHANGED
@@ -305,19 +305,20 @@ async def stream_generate(prompt: str, mode: optionsSets.optionSet = optionsSets
305
  await session.close()
306
 
307
 
308
- def run(generator):
309
- loop = asyncio.get_event_loop()
310
- gen = generator.__aiter__()
 
 
 
 
 
 
 
 
 
 
311
 
312
- while True:
313
- try:
314
- next_val = loop.run_until_complete(gen.__anext__())
315
- yield next_val
316
-
317
- except StopAsyncIteration:
318
- break
319
-
320
- #print('Done')
321
 
322
 
323
  def convert(messages):
 
305
  await session.close()
306
 
307
 
308
+ def run(generator):
309
+ loop = asyncio.new_event_loop()
310
+ asyncio.set_event_loop(loop)
311
+ gen = generator.__aiter__()
312
+
313
+ while True:
314
+ try:
315
+ next_val = loop.run_until_complete(gen.__anext__())
316
+ yield next_val
317
+
318
+ except StopAsyncIteration:
319
+ break
320
+ #print('Done')
321
 
 
 
 
 
 
 
 
 
 
322
 
323
 
324
  def convert(messages):
g4f/Provider/Providers/DeepAi.py CHANGED
@@ -1,48 +1,74 @@
1
- import os
2
  import json
3
- import random
4
- import hashlib
5
  import requests
6
-
7
  from ...typing import sha256, Dict, get_type_hints
8
 
9
- url = 'https://deepai.org'
 
10
  model = ['gpt-3.5-turbo']
11
  supports_stream = True
12
  needs_auth = False
13
  working = True
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- def _create_completion(model: str, messages: list, stream: bool, **kwargs):
17
- def md5(text: str) -> str:
18
- return hashlib.md5(text.encode()).hexdigest()[::-1]
19
 
 
 
 
 
 
 
 
 
 
20
 
21
- def get_api_key(user_agent: str) -> str:
22
- part1 = str(random.randint(0, 10**11))
23
- part2 = md5(user_agent + md5(user_agent + md5(user_agent + part1 + "x")))
24
-
25
- return f"tryit-{part1}-{part2}"
26
 
27
- user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'
 
28
 
29
- headers = {
30
- "api-key": get_api_key(user_agent),
31
- "user-agent": user_agent
32
- }
33
 
34
- files = {
35
- "chat_style": (None, "chat"),
36
- "chatHistory": (None, json.dumps(messages))
37
- }
38
 
39
- r = requests.post("https://api.deepai.org/chat_response", headers=headers, files=files, stream=True)
 
 
40
 
41
- for chunk in r.iter_content(chunk_size=None):
42
- r.raise_for_status()
 
43
  yield chunk.decode()
44
 
45
-
46
  params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
47
  '(%s)' % ', '.join(
48
  [f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
 
 
1
  import json
2
+ import os
 
3
  import requests
4
+ import js2py
5
  from ...typing import sha256, Dict, get_type_hints
6
 
7
+
8
+ url = "https://api.deepai.org/"
9
  model = ['gpt-3.5-turbo']
10
  supports_stream = True
11
  needs_auth = False
12
  working = True
13
 
14
+ token_js = """
15
+ var agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36'
16
+ var a, b, c, d, e, h, f, l, g, k, m, n, r, x, C, E, N, F, T, O, P, w, D, G, Q, R, W, I, aa, fa, na, oa, ha, ba, X, ia, ja, ka, J, la, K, L, ca, S, U, M, ma, B, da, V, Y;
17
+ h = Math.round(1E11 * Math.random()) + "";
18
+ f = function () {
19
+ for (var p = [], q = 0; 64 > q;) p[q] = 0 | 4294967296 * Math.sin(++q % Math.PI);
20
+
21
+ return function (t) {
22
+ var v, y, H, ea = [v = 1732584193, y = 4023233417, ~v, ~y],
23
+ Z = [],
24
+ A = unescape(encodeURI(t)) + "\u0080",
25
+ z = A.length;
26
+ t = --z / 4 + 2 | 15;
27
+ for (Z[--t] = 8 * z; ~z;) Z[z >> 2] |= A.charCodeAt(z) << 8 * z--;
28
+ for (q = A = 0; q < t; q += 16) {
29
+ for (z = ea; 64 > A; z = [H = z[3], v + ((H = z[0] + [v & y | ~v & H, H & v | ~H & y, v ^ y ^ H, y ^ (v | ~H)][z = A >> 4] + p[A] + ~~Z[q | [A, 5 * A + 1, 3 * A + 5, 7 * A][z] & 15]) << (z = [7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21][4 * z + A++ % 4]) | H >>> -z), v, y]) v = z[1] | 0, y = z[2];
30
+ for (A = 4; A;) ea[--A] += z[A]
31
+ }
32
+ for (t = ""; 32 > A;) t += (ea[A >> 3] >> 4 * (1 ^ A++) & 15).toString(16);
33
+ return t.split("").reverse().join("")
34
+ }
35
+ }();
36
 
37
+ "tryit-" + h + "-" + f(agent + f(agent + f(agent + h + "x")));
38
+ """
 
39
 
40
+ uuid4_js = """
41
+ function uuidv4() {
42
+ for (var a = [], b = 0; 36 > b; b++) a[b] = "0123456789abcdef".substr(Math.floor(16 * Math.random()), 1);
43
+ a[14] = "4";
44
+ a[19] = "0123456789abcdef".substr(a[19] & 3 | 8, 1);
45
+ a[8] = a[13] = a[18] = a[23] = "-";
46
+ return a.join("")
47
+ }
48
+ uuidv4();"""
49
 
50
+ def create_session():
51
+ url = "https://api.deepai.org/save_chat_session"
 
 
 
52
 
53
+ payload = {'uuid': js2py.eval_js(uuid4_js), "title":"", "chat_style": "chat", "messages": '[]'}
54
+ headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36"}
55
 
56
+ response = requests.request("POST", url, headers=headers, data=payload)
57
+ return response
 
 
58
 
59
+ def _create_completion(model: str, messages:list, stream: bool = True, **kwargs):
60
+ create_session()
61
+ url = "https://api.deepai.org/make_me_a_pizza"
 
62
 
63
+ payload = {'chas_style': "chat", "chatHistory": json.dumps(messages)}
64
+ api_key = js2py.eval_js(token_js)
65
+ headers = {"api-key": api_key, "User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36"}
66
 
67
+ response = requests.request("POST", url, headers=headers, data=payload, stream=True)
68
+ for chunk in response.iter_content(chunk_size=None):
69
+ response.raise_for_status()
70
  yield chunk.decode()
71
 
 
72
  params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
73
  '(%s)' % ', '.join(
74
  [f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
g4f/Provider/Providers/EasyChat.py CHANGED
@@ -7,40 +7,47 @@ model = ['gpt-3.5-turbo']
7
  supports_stream = True
8
  needs_auth = False
9
  working = True
 
 
 
 
 
 
 
 
10
 
 
 
11
 
12
  def _create_completion(model: str, messages: list, stream: bool, **kwargs):
 
 
13
  headers = {
14
- 'authority': 'free.easychat.work',
15
  'accept': 'text/event-stream',
16
- 'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
17
  'content-type': 'application/json',
18
- 'endpoint': '',
19
- 'origin': 'https://free.easychat.work',
20
- 'plugins': '0',
21
- 'referer': 'https://free.easychat.work/',
22
  'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
23
- 'sec-ch-ua-mobile': '?0',
24
- 'sec-ch-ua-platform': '"macOS"',
25
- 'sec-fetch-dest': 'empty',
26
- 'sec-fetch-mode': 'cors',
27
- 'sec-fetch-site': 'same-origin',
28
  'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',
29
- 'usesearch': 'false',
30
  'x-requested-with': 'XMLHttpRequest',
31
  }
32
 
33
  json_data = {
34
  'messages': messages,
35
  'stream': True,
36
- 'model': model,
37
  'temperature': kwargs.get('temperature', 0.5),
38
  'presence_penalty': kwargs.get('presence_penalty', 0),
39
  'frequency_penalty': kwargs.get('frequency_penalty', 0),
40
  'top_p': kwargs.get('top_p', 1),
41
  }
42
 
43
- response = requests.post('https://free.easychat.work/api/openai/v1/chat/completions',
 
 
 
44
  headers=headers, json=json_data)
45
 
46
  for chunk in response.iter_lines():
@@ -49,4 +56,4 @@ def _create_completion(model: str, messages: list, stream: bool, **kwargs):
49
  yield (data['choices'][0]['delta']['content'])
50
 
51
  params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
52
- '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
 
7
  supports_stream = True
8
  needs_auth = False
9
  working = True
10
+ active_servers = [
11
+ "https://chat10.fastgpt.me",
12
+ "https://chat9.fastgpt.me",
13
+ "https://chat1.fastgpt.me",
14
+ "https://chat2.fastgpt.me",
15
+ "https://chat3.fastgpt.me",
16
+ "https://chat4.fastgpt.me"
17
+ ]
18
 
19
+ # Change server if not work current server
20
+ server = active_servers[0]
21
 
22
  def _create_completion(model: str, messages: list, stream: bool, **kwargs):
23
+ req = requests.Session()
24
+
25
  headers = {
26
+ 'authority': f'{server}'.replace("https://",""),
27
  'accept': 'text/event-stream',
28
+ 'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3,fa=0.2',
29
  'content-type': 'application/json',
30
+ 'origin': f'{server}',
31
+ 'referer': f'{server}/',
 
 
32
  'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
 
 
 
 
 
33
  'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',
 
34
  'x-requested-with': 'XMLHttpRequest',
35
  }
36
 
37
  json_data = {
38
  'messages': messages,
39
  'stream': True,
40
+ 'model': "gpt-3.5-turbo",
41
  'temperature': kwargs.get('temperature', 0.5),
42
  'presence_penalty': kwargs.get('presence_penalty', 0),
43
  'frequency_penalty': kwargs.get('frequency_penalty', 0),
44
  'top_p': kwargs.get('top_p', 1),
45
  }
46
 
47
+ # init cookies from server
48
+ req.get(f'{server}/')
49
+
50
+ response = req.post(f'{server}/api/openai/v1/chat/completions',
51
  headers=headers, json=json_data)
52
 
53
  for chunk in response.iter_lines():
 
56
  yield (data['choices'][0]['delta']['content'])
57
 
58
  params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
59
+ '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
g4f/Provider/Providers/Raycast.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import requests
5
+ from g4f.typing import get_type_hints
6
+
7
+ url = "https://backend.raycast.com/api/v1/ai/chat_completions"
8
+ model = ['gpt-3.5-turbo', 'gpt-4']
9
+ supports_stream = True
10
+ needs_auth = True
11
+ working = True
12
+
13
+
14
+ def _create_completion(model: str, messages: list, stream: bool, **kwargs):
15
+ auth = kwargs.get('auth')
16
+ headers = {
17
+ 'Accept': 'application/json',
18
+ 'Accept-Language': 'en-US,en;q=0.9',
19
+ 'Authorization': f'Bearer {auth}',
20
+ 'Content-Type': 'application/json',
21
+ 'User-Agent': 'Raycast/0 CFNetwork/1410.0.3 Darwin/22.6.0',
22
+ }
23
+ parsed_messages = []
24
+ for message in messages:
25
+ parsed_messages.append({
26
+ 'author': message['role'],
27
+ 'content': {'text': message['content']}
28
+ })
29
+ data = {
30
+ "debug": False,
31
+ "locale": "en-CN",
32
+ "messages": parsed_messages,
33
+ "model": model,
34
+ "provider": "openai",
35
+ "source": "ai_chat",
36
+ "system_instruction": "markdown",
37
+ "temperature": 0.5
38
+ }
39
+ response = requests.post(url, headers=headers, json=data, stream=True)
40
+ for token in response.iter_lines():
41
+ if b'data: ' not in token:
42
+ continue
43
+ completion_chunk = json.loads(token.decode().replace('data: ', ''))
44
+ token = completion_chunk['text']
45
+ if token != None:
46
+ yield token
47
+
48
+
49
+ params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
50
+ '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
g4f/Provider/Providers/Vercel.py CHANGED
@@ -42,6 +42,116 @@ vercel_models = {'anthropic:claude-instant-v1': {'id': 'anthropic:claude-instant
42
  'id': 'huggingface:bigcode/santacoder', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'BigCode', 'instructions': 'The model was trained on GitHub code. As such it is not an instruction model and commands like "Write a function that computes the square root." do not work well. You should phrase commands like they occur in source code such as comments (e.g. # the following function computes the sqrt) or write a function signature and docstring and let the model complete the function body.', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}}, 'name': 'santacoder'}, 'cohere:command-medium-nightly': {'id': 'cohere:command-medium-nightly', 'provider': 'cohere', 'providerHumanName': 'Cohere', 'makerHumanName': 'Cohere', 'name': 'command-medium-nightly', 'parameters': {'temperature': {'value': 0.9, 'range': [0, 2]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0, 1]}, 'topK': {'value': 0, 'range': [0, 500]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'cohere:command-xlarge-nightly': {'id': 'cohere:command-xlarge-nightly', 'provider': 'cohere', 'providerHumanName': 'Cohere', 'makerHumanName': 'Cohere', 'name': 'command-xlarge-nightly', 'parameters': {'temperature': {'value': 0.9, 'range': [0, 2]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0, 1]}, 'topK': {'value': 0, 'range': [0, 500]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:gpt-4': {'id': 'openai:gpt-4', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'gpt-4', 'minBillingTier': 'pro', 'parameters': {'temperature': {'value': 0.7, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:code-cushman-001': {'id': 'openai:code-cushman-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'code-cushman-001'}, 'openai:code-davinci-002': {'id': 'openai:code-davinci-002', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'code-davinci-002'}, 'openai:gpt-3.5-turbo': {'id': 'openai:gpt-3.5-turbo', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.7, 'range': [0, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'topK': {'value': 1, 'range': [1, 500]}, 'presencePenalty': {'value': 1, 'range': [0, 1]}, 'frequencyPenalty': {'value': 1, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'gpt-3.5-turbo'}, 'openai:text-ada-001': {'id': 'openai:text-ada-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-ada-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-babbage-001': {'id': 'openai:text-babbage-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-babbage-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-curie-001': {'id': 'openai:text-curie-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-curie-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-davinci-002': {'id': 'openai:text-davinci-002', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-davinci-002', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-davinci-003': {'id': 'openai:text-davinci-003', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-davinci-003', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}}
43
 
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  def _create_completion(model: str, messages: list, stream: bool, **kwargs):
46
  return
47
  # conversation = 'This is a conversation between a human and a language model, respond to the last message accordingly, referring to the past history of messages if needed.\n'
 
42
  'id': 'huggingface:bigcode/santacoder', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'BigCode', 'instructions': 'The model was trained on GitHub code. As such it is not an instruction model and commands like "Write a function that computes the square root." do not work well. You should phrase commands like they occur in source code such as comments (e.g. # the following function computes the sqrt) or write a function signature and docstring and let the model complete the function body.', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}}, 'name': 'santacoder'}, 'cohere:command-medium-nightly': {'id': 'cohere:command-medium-nightly', 'provider': 'cohere', 'providerHumanName': 'Cohere', 'makerHumanName': 'Cohere', 'name': 'command-medium-nightly', 'parameters': {'temperature': {'value': 0.9, 'range': [0, 2]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0, 1]}, 'topK': {'value': 0, 'range': [0, 500]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'cohere:command-xlarge-nightly': {'id': 'cohere:command-xlarge-nightly', 'provider': 'cohere', 'providerHumanName': 'Cohere', 'makerHumanName': 'Cohere', 'name': 'command-xlarge-nightly', 'parameters': {'temperature': {'value': 0.9, 'range': [0, 2]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0, 1]}, 'topK': {'value': 0, 'range': [0, 500]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:gpt-4': {'id': 'openai:gpt-4', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'gpt-4', 'minBillingTier': 'pro', 'parameters': {'temperature': {'value': 0.7, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:code-cushman-001': {'id': 'openai:code-cushman-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'code-cushman-001'}, 'openai:code-davinci-002': {'id': 'openai:code-davinci-002', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'code-davinci-002'}, 'openai:gpt-3.5-turbo': {'id': 'openai:gpt-3.5-turbo', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.7, 'range': [0, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'topK': {'value': 1, 'range': [1, 500]}, 'presencePenalty': {'value': 1, 'range': [0, 1]}, 'frequencyPenalty': {'value': 1, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'gpt-3.5-turbo'}, 'openai:text-ada-001': {'id': 'openai:text-ada-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-ada-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-babbage-001': {'id': 'openai:text-babbage-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-babbage-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-curie-001': {'id': 'openai:text-curie-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-curie-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-davinci-002': {'id': 'openai:text-davinci-002', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-davinci-002', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-davinci-003': {'id': 'openai:text-davinci-003', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-davinci-003', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}}
43
 
44
 
45
+ # import requests
46
+ # import execjs
47
+ # import ubox
48
+ # import json
49
+ # import re
50
+
51
+
52
+ # html = requests.get('https://sdk.vercel.ai/').text
53
+ # paths_regex = r'static\/chunks.+?\.js'
54
+ # separator_regex = r'"\]\)<\/script><script>self\.__next_f\.push\(\[.,"'
55
+
56
+ # paths = re.findall(paths_regex, html)
57
+ # for i in range(len(paths)):
58
+ # paths[i] = re.sub(separator_regex, "", paths[i])
59
+ # paths = list(set(paths))
60
+ # print(paths)
61
+
62
+ # scripts = []
63
+ # threads = []
64
+
65
+ # print(f"Downloading and parsing scripts...")
66
+ # def download_thread(path):
67
+ # script_url = f"{self.base_url}/_next/{path}"
68
+ # script = self.session.get(script_url).text
69
+ # scripts.append(script)
70
+
71
+ # for path in paths:
72
+ # thread = threading.Thread(target=download_thread, args=(path,), daemon=True)
73
+ # thread.start()
74
+ # threads.append(thread)
75
+
76
+ # for thread in threads:
77
+ # thread.join()
78
+
79
+ # for script in scripts:
80
+ # models_regex = r'let .="\\n\\nHuman:\",r=(.+?),.='
81
+ # matches = re.findall(models_regex, script)
82
+
83
+ # if matches:
84
+ # models_str = matches[0]
85
+ # stop_sequences_regex = r'(?<=stopSequences:{value:\[)\D(?<!\])'
86
+ # models_str = re.sub(stop_sequences_regex, re.escape('"\\n\\nHuman:"'), models_str)
87
+
88
+ # context = quickjs.Context()
89
+ # json_str = context.eval(f"({models_str})").json()
90
+ # #return json.loads(json_str)
91
+
92
+ # quit()
93
+ # headers = {
94
+ # 'authority': 'sdk.vercel.ai',
95
+ # 'accept': '*/*',
96
+ # 'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
97
+ # 'content-type': 'application/json',
98
+ # 'origin': 'https://sdk.vercel.ai',
99
+ # 'referer': 'https://sdk.vercel.ai/',
100
+ # 'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
101
+ # 'sec-ch-ua-mobile': '?0',
102
+ # 'sec-ch-ua-platform': '"macOS"',
103
+ # 'sec-fetch-dest': 'empty',
104
+ # 'sec-fetch-mode': 'cors',
105
+ # 'sec-fetch-site': 'same-origin',
106
+ # 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'
107
+ # }
108
+
109
+ # response = requests.get('https://sdk.vercel.ai/openai.jpeg', headers=headers)
110
+
111
+ # data = (json.loads(ubox.b64dec(response.text)))
112
+
113
+ # script = 'globalThis={data: "sentinel"};a=()=>{return (%s)(%s)}' % (data['c'], data['a'])
114
+
115
+ # token_data = execjs.compile(script).call('a')
116
+ # print(token_data)
117
+
118
+ # token = {
119
+ # 'r': token_data,
120
+ # 't': data["t"]
121
+ # }
122
+
123
+ # botToken = ubox.b64enc(json.dumps(token, separators=(',', ':')))
124
+ # print(botToken)
125
+
126
+ # import requests
127
+
128
+ # headers['custom-encoding'] = botToken
129
+
130
+ # json_data = {
131
+ # 'messages': [
132
+ # {
133
+ # 'role': 'user',
134
+ # 'content': 'hello',
135
+ # },
136
+ # ],
137
+ # 'playgroundId': ubox.uuid4(),
138
+ # 'chatIndex': 0,
139
+ # 'model': 'openai:gpt-3.5-turbo',
140
+ # 'temperature': 0.7,
141
+ # 'maxTokens': 500,
142
+ # 'topK': 1,
143
+ # 'topP': 1,
144
+ # 'frequencyPenalty': 1,
145
+ # 'presencePenalty': 1,
146
+ # 'stopSequences': []
147
+ # }
148
+
149
+ # response = requests.post('https://sdk.vercel.ai/api/generate',
150
+ # headers=headers, json=json_data, stream=True)
151
+
152
+ # for token in response.iter_content(chunk_size=2046):
153
+ # print(token)
154
+
155
  def _create_completion(model: str, messages: list, stream: bool, **kwargs):
156
  return
157
  # conversation = 'This is a conversation between a human and a language model, respond to the last message accordingly, referring to the past history of messages if needed.\n'
g4f/Provider/Providers/__pycache__/Ails.cpython-311.pyc CHANGED
Binary files a/g4f/Provider/Providers/__pycache__/Ails.cpython-311.pyc and b/g4f/Provider/Providers/__pycache__/Ails.cpython-311.pyc differ
 
g4f/Provider/Providers/__pycache__/Bing.cpython-311.pyc CHANGED
Binary files a/g4f/Provider/Providers/__pycache__/Bing.cpython-311.pyc and b/g4f/Provider/Providers/__pycache__/Bing.cpython-311.pyc differ
 
g4f/Provider/Providers/__pycache__/DeepAi.cpython-311.pyc CHANGED
Binary files a/g4f/Provider/Providers/__pycache__/DeepAi.cpython-311.pyc and b/g4f/Provider/Providers/__pycache__/DeepAi.cpython-311.pyc differ
 
g4f/Provider/Providers/__pycache__/EasyChat.cpython-311.pyc CHANGED
Binary files a/g4f/Provider/Providers/__pycache__/EasyChat.cpython-311.pyc and b/g4f/Provider/Providers/__pycache__/EasyChat.cpython-311.pyc differ
 
g4f/Provider/Providers/__pycache__/Raycast.cpython-311.pyc ADDED
Binary file (2.77 kB). View file
 
g4f/Provider/Providers/__pycache__/Vercel.cpython-311.pyc CHANGED
Binary files a/g4f/Provider/Providers/__pycache__/Vercel.cpython-311.pyc and b/g4f/Provider/Providers/__pycache__/Vercel.cpython-311.pyc differ
 
g4f/Provider/Providers/__pycache__/opchatgpts.cpython-311.pyc ADDED
Binary file (2.67 kB). View file
 
g4f/Provider/Providers/opchatgpts.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ from ...typing import sha256, Dict, get_type_hints
4
+
5
+ url = 'https://opchatgpts.net'
6
+ model = ['gpt-3.5-turbo']
7
+ supports_stream = False
8
+ needs_auth = False
9
+ working = True
10
+
11
+ def _create_completion(model: str, messages: list, stream: bool = False, temperature: float = 0.8, max_tokens: int = 1024, system_prompt: str = "Converse as if you were an AI assistant. Be friendly, creative.", **kwargs):
12
+
13
+ data = {
14
+ 'env': 'chatbot',
15
+ 'session': 'N/A',
16
+ 'prompt': "\n",
17
+ 'context': system_prompt,
18
+ 'messages': messages,
19
+ 'newMessage': messages[::-1][0]["content"],
20
+ 'userName': '<div class="mwai-name-text">User:</div>',
21
+ 'aiName': '<div class="mwai-name-text">AI:</div>',
22
+ 'model': 'gpt-3.5-turbo',
23
+ 'temperature': temperature,
24
+ 'maxTokens': max_tokens,
25
+ 'maxResults': 1,
26
+ 'apiKey': '',
27
+ 'service': 'openai',
28
+ 'embeddingsIndex': '',
29
+ 'stop': ''
30
+ }
31
+
32
+ response = requests.post('https://opchatgpts.net/wp-json/ai-chatbot/v1/chat', json=data).json()
33
+
34
+ if response["success"]:
35
+
36
+ return response["reply"] # `yield (response["reply"])` doesn't work
37
+
38
+ raise Exception("Request failed: " + response)
39
+
40
+ params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
41
+ '(%s)' % ', '.join(
42
+ [f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
g4f/Provider/__init__.py CHANGED
@@ -23,6 +23,8 @@ from .Providers import (
23
  BingHuan,
24
  Wewordle,
25
  ChatgptAi,
 
 
26
  )
27
 
28
  Palm = Bard
 
23
  BingHuan,
24
  Wewordle,
25
  ChatgptAi,
26
+ opchatgpts,
27
+ Raycast,
28
  )
29
 
30
  Palm = Bard
g4f/Provider/__pycache__/__init__.cpython-311.pyc CHANGED
Binary files a/g4f/Provider/__pycache__/__init__.cpython-311.pyc and b/g4f/Provider/__pycache__/__init__.cpython-311.pyc differ
 
g4f/__init__.py CHANGED
@@ -1,12 +1,12 @@
1
  import sys
2
  from . import Provider
3
- from g4f.models import Model, ModelUtils
4
 
5
  logging = False
6
 
7
  class ChatCompletion:
8
  @staticmethod
9
- def create(model: Model.model or str, messages: list, provider: Provider.Provider = None, stream: bool = False, auth: str = False, **kwargs):
10
  kwargs['auth'] = auth
11
  if provider and provider.working == False:
12
  return f'{provider.__name__} is not working'
@@ -19,7 +19,7 @@ class ChatCompletion:
19
  try:
20
  if isinstance(model, str):
21
  try:
22
- model = ModelUtils.convert[model]
23
  except KeyError:
24
  raise Exception(f'The model: {model} does not exist')
25
 
@@ -39,4 +39,4 @@ class ChatCompletion:
39
  arg: str = str(e).split("'")[1]
40
  print(
41
  f"ValueError: {engine.__name__} does not support '{arg}' argument", file=sys.stderr)
42
- sys.exit(1)
 
1
  import sys
2
  from . import Provider
3
+ from g4f import models
4
 
5
  logging = False
6
 
7
  class ChatCompletion:
8
  @staticmethod
9
+ def create(model: models.Model or str, messages: list, provider: Provider.Provider = None, stream: bool = False, auth: str = False, **kwargs):
10
  kwargs['auth'] = auth
11
  if provider and provider.working == False:
12
  return f'{provider.__name__} is not working'
 
19
  try:
20
  if isinstance(model, str):
21
  try:
22
+ model = models.ModelUtils.convert[model]
23
  except KeyError:
24
  raise Exception(f'The model: {model} does not exist')
25
 
 
39
  arg: str = str(e).split("'")[1]
40
  print(
41
  f"ValueError: {engine.__name__} does not support '{arg}' argument", file=sys.stderr)
42
+ sys.exit(1)
g4f/__pycache__/__init__.cpython-311.pyc CHANGED
Binary files a/g4f/__pycache__/__init__.cpython-311.pyc and b/g4f/__pycache__/__init__.cpython-311.pyc differ
 
g4f/__pycache__/models.cpython-311.pyc CHANGED
Binary files a/g4f/__pycache__/models.cpython-311.pyc and b/g4f/__pycache__/models.cpython-311.pyc differ
 
g4f/models.py CHANGED
@@ -1,232 +1,243 @@
1
- from g4f import Provider
 
 
2
 
3
 
 
4
  class Model:
5
- class model:
6
- name: str
7
- base_provider: str
8
- best_provider: str
9
-
10
- class gpt_35_turbo:
11
- name: str = 'gpt-3.5-turbo'
12
- base_provider: str = 'openai'
13
- best_provider: Provider.Provider = Provider.Forefront
14
-
15
- class gpt_4:
16
- name: str = 'gpt-4'
17
- base_provider: str = 'openai'
18
- best_provider: Provider.Provider = Provider.Bing
19
- best_providers: list = [Provider.Bing, Provider.Lockchat]
20
-
21
- class claude_instant_v1_100k:
22
- name: str = 'claude-instant-v1-100k'
23
- base_provider: str = 'anthropic'
24
- best_provider: Provider.Provider = Provider.Vercel
25
-
26
- class claude_instant_v1:
27
- name: str = 'claude-instant-v1'
28
- base_provider: str = 'anthropic'
29
- best_provider: Provider.Provider = Provider.Vercel
30
-
31
- class claude_v1_100k:
32
- name: str = 'claude-v1-100k'
33
- base_provider: str = 'anthropic'
34
- best_provider: Provider.Provider = Provider.Vercel
35
-
36
- class claude_v1:
37
- name: str = 'claude-v1'
38
- base_provider: str = 'anthropic'
39
- best_provider: Provider.Provider = Provider.Vercel
40
-
41
- class alpaca_7b:
42
- name: str = 'alpaca-7b'
43
- base_provider: str = 'replicate'
44
- best_provider: Provider.Provider = Provider.Vercel
45
-
46
- class stablelm_tuned_alpha_7b:
47
- name: str = 'stablelm-tuned-alpha-7b'
48
- base_provider: str = 'replicate'
49
- best_provider: Provider.Provider = Provider.Vercel
50
-
51
- class bloom:
52
- name: str = 'bloom'
53
- base_provider: str = 'huggingface'
54
- best_provider: Provider.Provider = Provider.Vercel
55
-
56
- class bloomz:
57
- name: str = 'bloomz'
58
- base_provider: str = 'huggingface'
59
- best_provider: Provider.Provider = Provider.Vercel
60
-
61
- class flan_t5_xxl:
62
- name: str = 'flan-t5-xxl'
63
- base_provider: str = 'huggingface'
64
- best_provider: Provider.Provider = Provider.Vercel
65
-
66
- class flan_ul2:
67
- name: str = 'flan-ul2'
68
- base_provider: str = 'huggingface'
69
- best_provider: Provider.Provider = Provider.Vercel
70
-
71
- class gpt_neox_20b:
72
- name: str = 'gpt-neox-20b'
73
- base_provider: str = 'huggingface'
74
- best_provider: Provider.Provider = Provider.Vercel
75
-
76
- class oasst_sft_4_pythia_12b_epoch_35:
77
- name: str = 'oasst-sft-4-pythia-12b-epoch-3.5'
78
- base_provider: str = 'huggingface'
79
- best_provider: Provider.Provider = Provider.Vercel
80
-
81
- class santacoder:
82
- name: str = 'santacoder'
83
- base_provider: str = 'huggingface'
84
- best_provider: Provider.Provider = Provider.Vercel
85
-
86
- class command_medium_nightly:
87
- name: str = 'command-medium-nightly'
88
- base_provider: str = 'cohere'
89
- best_provider: Provider.Provider = Provider.Vercel
90
-
91
- class command_xlarge_nightly:
92
- name: str = 'command-xlarge-nightly'
93
- base_provider: str = 'cohere'
94
- best_provider: Provider.Provider = Provider.Vercel
95
-
96
- class code_cushman_001:
97
- name: str = 'code-cushman-001'
98
- base_provider: str = 'openai'
99
- best_provider: Provider.Provider = Provider.Vercel
100
-
101
- class code_davinci_002:
102
- name: str = 'code-davinci-002'
103
- base_provider: str = 'openai'
104
- best_provider: Provider.Provider = Provider.Vercel
105
-
106
- class text_ada_001:
107
- name: str = 'text-ada-001'
108
- base_provider: str = 'openai'
109
- best_provider: Provider.Provider = Provider.Vercel
110
-
111
- class text_babbage_001:
112
- name: str = 'text-babbage-001'
113
- base_provider: str = 'openai'
114
- best_provider: Provider.Provider = Provider.Vercel
115
-
116
- class text_curie_001:
117
- name: str = 'text-curie-001'
118
- base_provider: str = 'openai'
119
- best_provider: Provider.Provider = Provider.Vercel
120
-
121
- class text_davinci_002:
122
- name: str = 'text-davinci-002'
123
- base_provider: str = 'openai'
124
- best_provider: Provider.Provider = Provider.Vercel
125
-
126
- class text_davinci_003:
127
- name: str = 'text-davinci-003'
128
- base_provider: str = 'openai'
129
- best_provider: Provider.Provider = Provider.Vercel
130
-
131
- class palm:
132
- name: str = 'palm'
133
- base_provider: str = 'google'
134
- best_provider: Provider.Provider = Provider.Bard
135
-
136
-
137
- """ 'falcon-40b': Model.falcon_40b,
138
- 'falcon-7b': Model.falcon_7b,
139
- 'llama-13b': Model.llama_13b,"""
140
-
141
- class falcon_40b:
142
- name: str = 'falcon-40b'
143
- base_provider: str = 'huggingface'
144
- best_provider: Provider.Provider = Provider.H2o
145
-
146
- class falcon_7b:
147
- name: str = 'falcon-7b'
148
- base_provider: str = 'huggingface'
149
- best_provider: Provider.Provider = Provider.H2o
150
-
151
- class llama_13b:
152
- name: str = 'llama-13b'
153
- base_provider: str = 'huggingface'
154
- best_provider: Provider.Provider = Provider.H2o
155
-
156
- class gpt_35_turbo_16k:
157
- name: str = 'gpt-3.5-turbo-16k'
158
- base_provider: str = 'openai'
159
- best_provider: Provider.Provider = Provider.EasyChat
160
-
161
- class gpt_35_turbo_0613:
162
- name: str = 'gpt-3.5-turbo-0613'
163
- base_provider: str = 'openai'
164
- best_provider: Provider.Provider = Provider.EasyChat
165
-
166
- class gpt_35_turbo_16k_0613:
167
- name: str = 'gpt-3.5-turbo-16k-0613'
168
- base_provider: str = 'openai'
169
- best_provider: Provider.Provider = Provider.EasyChat
170
-
171
- class gpt_4_32k:
172
- name: str = 'gpt-4-32k'
173
- base_provider: str = 'openai'
174
- best_provider = None
175
-
176
- class gpt_4_0613:
177
- name: str = 'gpt-4-0613'
178
- base_provider: str = 'openai'
179
- best_provider = None
180
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  class ModelUtils:
182
- convert: dict = {
183
- 'gpt-3.5-turbo': Model.gpt_35_turbo,
184
- 'gpt-3.6-turbo-16k': Model.gpt_35_turbo_16k,
185
- 'gpt-3.5-turbo-0613': Model.gpt_35_turbo_0613,
186
- 'gpt-3.5-turbo-16k-0613': Model.gpt_35_turbo_16k_0613,
187
-
188
- 'gpt-4': Model.gpt_4,
189
- 'gpt-4-32k': Model.gpt_4_32k,
190
- 'gpt-4-0613': Model.gpt_4_0613,
191
-
192
- 'claude-instant-v1-100k': Model.claude_instant_v1_100k,
193
- 'claude-v1-100k': Model.claude_v1_100k,
194
- 'claude-instant-v1': Model.claude_instant_v1,
195
- 'claude-v1': Model.claude_v1,
196
-
197
- 'alpaca-7b': Model.alpaca_7b,
198
- 'stablelm-tuned-alpha-7b': Model.stablelm_tuned_alpha_7b,
199
-
200
- 'bloom': Model.bloom,
201
- 'bloomz': Model.bloomz,
202
-
203
- 'flan-t5-xxl': Model.flan_t5_xxl,
204
- 'flan-ul2': Model.flan_ul2,
205
-
206
- 'gpt-neox-20b': Model.gpt_neox_20b,
207
- 'oasst-sft-4-pythia-12b-epoch-3.5': Model.oasst_sft_4_pythia_12b_epoch_35,
208
- 'santacoder': Model.santacoder,
209
-
210
- 'command-medium-nightly': Model.command_medium_nightly,
211
- 'command-xlarge-nightly': Model.command_xlarge_nightly,
212
-
213
- 'code-cushman-001': Model.code_cushman_001,
214
- 'code-davinci-002': Model.code_davinci_002,
215
-
216
- 'text-ada-001': Model.text_ada_001,
217
- 'text-babbage-001': Model.text_babbage_001,
218
- 'text-curie-001': Model.text_curie_001,
219
- 'text-davinci-002': Model.text_davinci_002,
220
- 'text-davinci-003': Model.text_davinci_003,
221
-
222
- 'palm2': Model.palm,
223
- 'palm': Model.palm,
224
- 'google': Model.palm,
225
- 'google-bard': Model.palm,
226
- 'google-palm': Model.palm,
227
- 'bard': Model.palm,
228
-
229
- 'falcon-40b': Model.falcon_40b,
230
- 'falcon-7b': Model.falcon_7b,
231
- 'llama-13b': Model.llama_13b,
232
- }
 
1
+ from types import ModuleType
2
+ from . import Provider
3
+ from dataclasses import dataclass
4
 
5
 
6
+ @dataclass
7
  class Model:
8
+ name: str
9
+ base_provider: str
10
+ best_provider: ModuleType or None
11
+
12
+ gpt_35_turbo = Model(
13
+ name="gpt-3.5-turbo",
14
+ base_provider="openai",
15
+ best_provider=Provider.GetGpt,
16
+ )
17
+
18
+ gpt_4 = Model(
19
+ name="gpt-4",
20
+ base_provider="openai",
21
+ best_provider=Provider.Bing,
22
+ )
23
+
24
+ claude_instant_v1_100k = Model(
25
+ name="claude-instant-v1-100k",
26
+ base_provider="anthropic",
27
+ best_provider=Provider.Vercel,
28
+ )
29
+
30
+ claude_instant_v1 = Model(
31
+ name="claude-instant-v1",
32
+ base_provider="anthropic",
33
+ best_provider=Provider.Vercel,
34
+ )
35
+
36
+ claude_v1_100k = Model(
37
+ name="claude-v1-100k",
38
+ base_provider="anthropic",
39
+ best_provider=Provider.Vercel,
40
+ )
41
+
42
+ claude_v1 = Model(
43
+ name="claude-v1",
44
+ base_provider="anthropic",
45
+ best_provider=Provider.Vercel,
46
+ )
47
+
48
+ alpaca_7b = Model(
49
+ name="alpaca-7b",
50
+ base_provider="replicate",
51
+ best_provider=Provider.Vercel,
52
+ )
53
+
54
+ stablelm_tuned_alpha_7b = Model(
55
+ name="stablelm-tuned-alpha-7b",
56
+ base_provider="replicate",
57
+ best_provider=Provider.Vercel,
58
+ )
59
+
60
+ bloom = Model(
61
+ name="bloom",
62
+ base_provider="huggingface",
63
+ best_provider=Provider.Vercel,
64
+ )
65
+
66
+ bloomz = Model(
67
+ name="bloomz",
68
+ base_provider="huggingface",
69
+ best_provider=Provider.Vercel,
70
+ )
71
+
72
+ flan_t5_xxl = Model(
73
+ name="flan-t5-xxl",
74
+ base_provider="huggingface",
75
+ best_provider=Provider.Vercel,
76
+ )
77
+
78
+ flan_ul2 = Model(
79
+ name="flan-ul2",
80
+ base_provider="huggingface",
81
+ best_provider=Provider.Vercel,
82
+ )
83
+
84
+ gpt_neox_20b = Model(
85
+ name="gpt-neox-20b",
86
+ base_provider="huggingface",
87
+ best_provider=Provider.Vercel,
88
+ )
89
+
90
+ oasst_sft_4_pythia_12b_epoch_35 = Model(
91
+ name="oasst-sft-4-pythia-12b-epoch-3.5",
92
+ base_provider="huggingface",
93
+ best_provider=Provider.Vercel,
94
+ )
95
+
96
+ santacoder = Model(
97
+ name="santacoder",
98
+ base_provider="huggingface",
99
+ best_provider=Provider.Vercel,
100
+ )
101
+
102
+ command_medium_nightly = Model(
103
+ name="command-medium-nightly",
104
+ base_provider="cohere",
105
+ best_provider=Provider.Vercel,
106
+ )
107
+
108
+ command_xlarge_nightly = Model(
109
+ name="command-xlarge-nightly",
110
+ base_provider="cohere",
111
+ best_provider=Provider.Vercel,
112
+ )
113
+
114
+ code_cushman_001 = Model(
115
+ name="code-cushman-001",
116
+ base_provider="openai",
117
+ best_provider=Provider.Vercel,
118
+ )
119
+
120
+ code_davinci_002 = Model(
121
+ name="code-davinci-002",
122
+ base_provider="openai",
123
+ best_provider=Provider.Vercel,
124
+ )
125
+
126
+ text_ada_001 = Model(
127
+ name="text-ada-001",
128
+ base_provider="openai",
129
+ best_provider=Provider.Vercel,
130
+ )
131
+
132
+ text_babbage_001 = Model(
133
+ name="text-babbage-001",
134
+ base_provider="openai",
135
+ best_provider=Provider.Vercel,
136
+ )
137
+
138
+ text_curie_001 = Model(
139
+ name="text-curie-001",
140
+ base_provider="openai",
141
+ best_provider=Provider.Vercel,
142
+ )
143
+
144
+ text_davinci_002 = Model(
145
+ name="text-davinci-002",
146
+ base_provider="openai",
147
+ best_provider=Provider.Vercel,
148
+ )
149
+
150
+ text_davinci_003 = Model(
151
+ name="text-davinci-003",
152
+ base_provider="openai",
153
+ best_provider=Provider.Vercel,
154
+ )
155
+
156
+ palm = Model(
157
+ name="palm",
158
+ base_provider="google",
159
+ best_provider=Provider.Bard,
160
+ )
161
+
162
+ falcon_40b = Model(
163
+ name="falcon-40b",
164
+ base_provider="huggingface",
165
+ best_provider=Provider.H2o,
166
+ )
167
+
168
+ falcon_7b = Model(
169
+ name="falcon-7b",
170
+ base_provider="huggingface",
171
+ best_provider=Provider.H2o,
172
+ )
173
+
174
+ llama_13b = Model(
175
+ name="llama-13b",
176
+ base_provider="huggingface",
177
+ best_provider=Provider.H2o,
178
+ )
179
+
180
+ gpt_35_turbo_16k = Model(
181
+ name="gpt-3.5-turbo-16k",
182
+ base_provider="openai",
183
+ best_provider=Provider.EasyChat,
184
+ )
185
+
186
+ gpt_35_turbo_0613 = Model(
187
+ name="gpt-3.5-turbo-0613",
188
+ base_provider="openai",
189
+ best_provider=Provider.EasyChat,
190
+ )
191
+
192
+ gpt_35_turbo_16k_0613 = Model(
193
+ name="gpt-3.5-turbo-16k-0613",
194
+ base_provider="openai",
195
+ best_provider=Provider.EasyChat,
196
+ )
197
+
198
+ gpt_4_32k = Model(name="gpt-4-32k", base_provider="openai", best_provider=None)
199
+
200
+ gpt_4_0613 = Model(name="gpt-4-0613", base_provider="openai", best_provider=None)
201
+
202
+
203
  class ModelUtils:
204
+ convert: dict[str, Model] = {
205
+ "gpt-3.5-turbo": gpt_35_turbo,
206
+ "gpt-3.5-turbo-16k": gpt_35_turbo_16k,
207
+ "gpt-3.5-turbo-0613": gpt_35_turbo_0613,
208
+ "gpt-3.5-turbo-16k-0613": gpt_35_turbo_16k_0613,
209
+ "gpt-4": gpt_4,
210
+ "gpt-4-32k": gpt_4_32k,
211
+ "gpt-4-0613": gpt_4_0613,
212
+ "claude-instant-v1-100k": claude_instant_v1_100k,
213
+ "claude-v1-100k": claude_v1_100k,
214
+ "claude-instant-v1": claude_instant_v1,
215
+ "claude-v1": claude_v1,
216
+ "alpaca-7b": alpaca_7b,
217
+ "stablelm-tuned-alpha-7b": stablelm_tuned_alpha_7b,
218
+ "bloom": bloom,
219
+ "bloomz": bloomz,
220
+ "flan-t5-xxl": flan_t5_xxl,
221
+ "flan-ul2": flan_ul2,
222
+ "gpt-neox-20b": gpt_neox_20b,
223
+ "oasst-sft-4-pythia-12b-epoch-3.5": oasst_sft_4_pythia_12b_epoch_35,
224
+ "santacoder": santacoder,
225
+ "command-medium-nightly": command_medium_nightly,
226
+ "command-xlarge-nightly": command_xlarge_nightly,
227
+ "code-cushman-001": code_cushman_001,
228
+ "code-davinci-002": code_davinci_002,
229
+ "text-ada-001": text_ada_001,
230
+ "text-babbage-001": text_babbage_001,
231
+ "text-curie-001": text_curie_001,
232
+ "text-davinci-002": text_davinci_002,
233
+ "text-davinci-003": text_davinci_003,
234
+ "palm2": palm,
235
+ "palm": palm,
236
+ "google": palm,
237
+ "google-bard": palm,
238
+ "google-palm": palm,
239
+ "bard": palm,
240
+ "falcon-40b": falcon_40b,
241
+ "falcon-7b": falcon_7b,
242
+ "llama-13b": llama_13b,
243
+ }