acastelan commited on
Commit
370f6dd
1 Parent(s): 463a5ff

Initial Commit

Browse files
.env.sample ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
2
+ HF_LLM_ENDPOINT="YOUR_LLM_ENDPOINT_URL_HERE"
3
+ HF_EMBED_ENDPOINT="YOUR_EMBED_MODEL_ENDPOINT_URL_HERE"
4
+ HF_TOKEN="YOUR_HF_TOKEN_HERE"
5
+ # !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .env
2
+ __pycache__/
3
+ .chainlit
4
+ *.faiss
5
+ *.pkl
6
+ .files
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
16
+ # ---- ENV VARIABLES ---- #
17
+ """
18
+ This function will load our environment file (.env) if it is present.
19
+
20
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
21
+ """
22
+ load_dotenv()
23
+
24
+ """
25
+ We will load our environment variables here.
26
+ """
27
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
28
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
29
+ HF_TOKEN = os.environ["HF_TOKEN"]
30
+
31
+ # ---- GLOBAL DECLARATIONS ---- #
32
+
33
+ # -- RETRIEVAL -- #
34
+ """
35
+ 1. Load Documents from Text File
36
+ 2. Split Documents into Chunks
37
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
38
+ 4. Index Files if they do not exist, otherwise load the vectorstore
39
+ """
40
+ ### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
41
+ ### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
42
+ text_loader = TextLoader("./data/paul_graham_essays.txt")
43
+ documents = text_loader.load()
44
+
45
+ ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
46
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
47
+ split_documents = text_splitter.split_documents(documents)
48
+
49
+ ### 3. LOAD HUGGINGFACE EMBEDDINGS
50
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
51
+ model=HF_EMBED_ENDPOINT,
52
+ task="feature-extraction",
53
+ huggingfacehub_api_token=HF_TOKEN,
54
+ )
55
+
56
+ if os.path.exists("./data/vectorstore"):
57
+ vectorstore = FAISS.load_local(
58
+ "./data/vectorstore",
59
+ hf_embeddings,
60
+ allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
61
+ )
62
+ hf_retriever = vectorstore.as_retriever()
63
+ print("Loaded Vectorstore")
64
+ else:
65
+ print("Indexing Files")
66
+ os.makedirs("./data/vectorstore", exist_ok=True)
67
+ ### 4. INDEX FILES
68
+ ### NOTE: REMEMBER TO BATCH THE DOCUMENTS WITH MAXIMUM BATCH SIZE = 32
69
+ for i in range(0, len(split_documents), 32):
70
+ if i == 0:
71
+ vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings)
72
+ continue
73
+ vectorstore.add_documents(split_documents[i:i+32])
74
+ vectorstore.save_local("./data/vectorstore")
75
+
76
+ hf_retriever = vectorstore.as_retriever()
77
+
78
+ # -- AUGMENTED -- #
79
+ """
80
+ 1. Define a String Template
81
+ 2. Create a Prompt Template from the String Template
82
+ """
83
+ ### 1. DEFINE STRING TEMPLATE
84
+ RAG_PROMPT_TEMPLATE = """\
85
+ <|start_header_id|>system<|end_header_id|>
86
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
87
+
88
+ <|start_header_id|>user<|end_header_id|>
89
+ User Query:
90
+ {query}
91
+
92
+ Context:
93
+ {context}<|eot_id|>
94
+
95
+ <|start_header_id|>assistant<|end_header_id|>
96
+ """
97
+
98
+ ### 2. CREATE PROMPT TEMPLATE
99
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
100
+
101
+ # -- GENERATION -- #
102
+ """
103
+ 1. Create a HuggingFaceEndpoint for the LLM
104
+ """
105
+ ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
106
+ hf_llm = HuggingFaceEndpoint(
107
+ endpoint_url=HF_LLM_ENDPOINT,
108
+ max_new_tokens=512,
109
+ top_k=10,
110
+ top_p=0.95,
111
+ temperature=0.3,
112
+ repetition_penalty=1.15,
113
+ huggingfacehub_api_token=HF_TOKEN,
114
+ )
115
+
116
+ @cl.author_rename
117
+ def rename(original_author: str):
118
+ """
119
+ This function can be used to rename the 'author' of a message.
120
+
121
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
122
+ """
123
+ rename_dict = {
124
+ "Assistant" : "Paul Graham Essay Bot"
125
+ }
126
+ return rename_dict.get(original_author, original_author)
127
+
128
+ @cl.on_chat_start
129
+ async def start_chat():
130
+ """
131
+ This function will be called at the start of every user session.
132
+
133
+ We will build our LCEL RAG chain here, and store it in the user session.
134
+
135
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
136
+ """
137
+
138
+ ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
139
+ lcel_rag_chain = (
140
+ {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
141
+ | rag_prompt | hf_llm
142
+ )
143
+
144
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
145
+
146
+ @cl.on_message
147
+ async def main(message: cl.Message):
148
+ """
149
+ This function will be called every time a message is recieved from a session.
150
+
151
+ We will use the LCEL RAG chain to generate a response to the user query.
152
+
153
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
154
+ """
155
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
156
+
157
+ msg = cl.Message(content="")
158
+
159
+ async for chunk in lcel_rag_chain.astream(
160
+ {"query": message.content},
161
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
162
+ ):
163
+ await msg.stream_token(chunk)
164
+
165
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # Paul Graham Essay RAG BOT
data/paul_graham_essays.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/paul_graham_essays.txt:Zone.Identifier ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ chainlit==0.7.700
2
+ langchain==0.2.5
3
+ langchain_community==0.2.5
4
+ langchain_core==0.2.9
5
+ langchain_huggingface==0.0.3
6
+ langchain_text_splitters==0.2.1
7
+ python-dotenv==1.0.1
8
+ faiss-cpu
solution_app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
16
+ # ---- ENV VARIABLES ---- #
17
+ """
18
+ This function will load our environment file (.env) if it is present.
19
+
20
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
21
+ """
22
+ load_dotenv()
23
+
24
+ """
25
+ We will load our environment variables here.
26
+ """
27
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
28
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
29
+ HF_TOKEN = os.environ["HF_TOKEN"]
30
+
31
+ # ---- GLOBAL DECLARATIONS ---- #
32
+
33
+ # -- RETRIEVAL -- #
34
+ """
35
+ 1. Load Documents from Text File
36
+ 2. Split Documents into Chunks
37
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
38
+ 4. Index Files if they do not exist, otherwise load the vectorstore
39
+ """
40
+ document_loader = TextLoader("./data/paul_graham_essays.txt")
41
+ documents = document_loader.load()
42
+
43
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
44
+ split_documents = text_splitter.split_documents(documents)
45
+
46
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
47
+ model=HF_EMBED_ENDPOINT,
48
+ task="feature-extraction",
49
+ huggingfacehub_api_token=HF_TOKEN,
50
+ )
51
+
52
+ if os.path.exists("./data/vectorstore"):
53
+ vectorstore = FAISS.load_local(
54
+ "./data/vectorstore",
55
+ hf_embeddings,
56
+ allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
57
+ )
58
+ hf_retriever = vectorstore.as_retriever()
59
+ print("Loaded Vectorstore")
60
+ else:
61
+ print("Indexing Files")
62
+ os.makedirs("./data/vectorstore", exist_ok=True)
63
+ for i in range(0, len(split_documents), 32):
64
+ if i == 0:
65
+ vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings)
66
+ continue
67
+ vectorstore.add_documents(split_documents[i:i+32])
68
+ vectorstore.save_local("./data/vectorstore")
69
+
70
+ hf_retriever = vectorstore.as_retriever()
71
+
72
+ # -- AUGMENTED -- #
73
+ """
74
+ 1. Define a String Template
75
+ 2. Create a Prompt Template from the String Template
76
+ """
77
+ RAG_PROMPT_TEMPLATE = """\
78
+ <|start_header_id|>system<|end_header_id|>
79
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
80
+
81
+ <|start_header_id|>user<|end_header_id|>
82
+ User Query:
83
+ {query}
84
+
85
+ Context:
86
+ {context}<|eot_id|>
87
+
88
+ <|start_header_id|>assistant<|end_header_id|>
89
+ """
90
+
91
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
92
+
93
+ # -- GENERATION -- #
94
+ """
95
+ 1. Create a HuggingFaceEndpoint for the LLM
96
+ """
97
+ hf_llm = HuggingFaceEndpoint(
98
+ endpoint_url=HF_LLM_ENDPOINT,
99
+ max_new_tokens=512,
100
+ top_k=10,
101
+ top_p=0.95,
102
+ temperature=0.3,
103
+ repetition_penalty=1.15,
104
+ huggingfacehub_api_token=HF_TOKEN,
105
+ )
106
+
107
+ @cl.author_rename
108
+ def rename(original_author: str):
109
+ """
110
+ This function can be used to rename the 'author' of a message.
111
+
112
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
113
+ """
114
+ rename_dict = {
115
+ "Assistant" : "Paul Graham Essay Bot"
116
+ }
117
+ return rename_dict.get(original_author, original_author)
118
+
119
+ @cl.on_chat_start
120
+ async def start_chat():
121
+ """
122
+ This function will be called at the start of every user session.
123
+
124
+ We will build our LCEL RAG chain here, and store it in the user session.
125
+
126
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
127
+ """
128
+
129
+ lcel_rag_chain = (
130
+ {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
131
+ | rag_prompt | hf_llm
132
+ )
133
+
134
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
135
+
136
+ @cl.on_message
137
+ async def main(message: cl.Message):
138
+ """
139
+ This function will be called every time a message is recieved from a session.
140
+
141
+ We will use the LCEL RAG chain to generate a response to the user query.
142
+
143
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
144
+ """
145
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
146
+
147
+ msg = cl.Message(content="")
148
+
149
+ for chunk in await cl.make_async(lcel_rag_chain.stream)(
150
+ {"query": message.content},
151
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
152
+ ):
153
+ await msg.stream_token(chunk)
154
+
155
+ await msg.send()