Spaces:
Sleeping
Sleeping
""" | |
This file contains functions that are used to perform data augmentation. | |
""" | |
import cv2 | |
import torch | |
import json | |
from skimage.transform import rotate, resize | |
import numpy as np | |
import jpeg4py as jpeg | |
from trimesh.visual import color | |
# from ..core import constants | |
# from .vibe_image_utils import gen_trans_from_patch_cv | |
from .kp_utils import map_smpl_to_common, get_smpl_joint_names | |
def get_transform(center, scale, res, rot=0): | |
"""Generate transformation matrix.""" | |
h = 200 * scale | |
t = np.zeros((3, 3)) | |
t[0, 0] = float(res[1]) / h | |
t[1, 1] = float(res[0]) / h | |
t[0, 2] = res[1] * (-float(center[0]) / h + .5) | |
t[1, 2] = res[0] * (-float(center[1]) / h + .5) | |
t[2, 2] = 1 | |
if not rot == 0: | |
rot = -rot # To match direction of rotation from cropping | |
rot_mat = np.zeros((3, 3)) | |
rot_rad = rot * np.pi / 180 | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
rot_mat[0, :2] = [cs, -sn] | |
rot_mat[1, :2] = [sn, cs] | |
rot_mat[2, 2] = 1 | |
# Need to rotate around center | |
t_mat = np.eye(3) | |
t_mat[0, 2] = -res[1] / 2 | |
t_mat[1, 2] = -res[0] / 2 | |
t_inv = t_mat.copy() | |
t_inv[:2, 2] *= -1 | |
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t))) | |
return t | |
def transform(pt, center, scale, res, invert=0, rot=0): | |
"""Transform pixel location to different reference.""" | |
t = get_transform(center, scale, res, rot=rot) | |
if invert: | |
t = np.linalg.inv(t) | |
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T | |
new_pt = np.dot(t, new_pt) | |
return new_pt[:2].astype(int) + 1 | |
def crop(img, center, scale, res, rot=0): | |
"""Crop image according to the supplied bounding box.""" | |
# Upper left point | |
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 | |
# Bottom right point | |
br = np.array(transform([res[0] + 1, | |
res[1] + 1], center, scale, res, invert=1)) - 1 | |
# Padding so that when rotated proper amount of context is included | |
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) | |
if not rot == 0: | |
ul -= pad | |
br += pad | |
new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
if len(img.shape) > 2: | |
new_shape += [img.shape[2]] | |
new_img = np.zeros(new_shape) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(len(img[0]), br[0]) | |
old_y = max(0, ul[1]), min(len(img), br[1]) | |
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], | |
old_x[0]:old_x[1]] | |
if not rot == 0: | |
# Remove padding | |
new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot) | |
new_img = new_img[pad:-pad, pad:-pad] | |
# resize image | |
new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res) | |
return new_img | |
def crop_cv2(img, center, scale, res, rot=0): | |
c_x, c_y = center | |
c_x, c_y = int(round(c_x)), int(round(c_y)) | |
patch_width, patch_height = int(round(res[0])), int(round(res[1])) | |
bb_width = bb_height = int(round(scale * 200.)) | |
trans = gen_trans_from_patch_cv( | |
c_x, c_y, bb_width, bb_height, | |
patch_width, patch_height, | |
scale=1.0, rot=rot, inv=False, | |
) | |
crop_img = cv2.warpAffine( | |
img, trans, (int(patch_width), int(patch_height)), | |
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT | |
) | |
return crop_img | |
def get_random_crop_coords(height, width, crop_height, crop_width, h_start, w_start): | |
y1 = int((height - crop_height) * h_start) | |
y2 = y1 + crop_height | |
x1 = int((width - crop_width) * w_start) | |
x2 = x1 + crop_width | |
return x1, y1, x2, y2 | |
def random_crop(center, scale, crop_scale_factor, axis='all'): | |
''' | |
center: bbox center [x,y] | |
scale: bbox height / 200 | |
crop_scale_factor: amount of cropping to be applied | |
axis: axis which cropping will be applied | |
"x": center the y axis and get random crops in x | |
"y": center the x axis and get random crops in y | |
"all": randomly crop from all locations | |
''' | |
orig_size = int(scale * 200.) | |
ul = (center - (orig_size / 2.)).astype(int) | |
crop_size = int(orig_size * crop_scale_factor) | |
if axis == 'all': | |
h_start = np.random.rand() | |
w_start = np.random.rand() | |
elif axis == 'x': | |
h_start = np.random.rand() | |
w_start = 0.5 | |
elif axis == 'y': | |
h_start = 0.5 | |
w_start = np.random.rand() | |
else: | |
raise ValueError(f'axis {axis} is undefined!') | |
x1, y1, x2, y2 = get_random_crop_coords( | |
height=orig_size, | |
width=orig_size, | |
crop_height=crop_size, | |
crop_width=crop_size, | |
h_start=h_start, | |
w_start=w_start, | |
) | |
scale = (y2 - y1) / 200. | |
center = ul + np.array([(y1 + y2) / 2, (x1 + x2) / 2]) | |
return center, scale | |
def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True): | |
"""'Undo' the image cropping/resizing. | |
This function is used when evaluating mask/part segmentation. | |
""" | |
res = img.shape[:2] | |
# Upper left point | |
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 | |
# Bottom right point | |
br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1 | |
# size of cropped image | |
crop_shape = [br[1] - ul[1], br[0] - ul[0]] | |
new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
if len(img.shape) > 2: | |
new_shape += [img.shape[2]] | |
new_img = np.zeros(orig_shape, dtype=np.uint8) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(orig_shape[1], br[0]) | |
old_y = max(0, ul[1]), min(orig_shape[0], br[1]) | |
img = resize(img, crop_shape) #, interp='nearest') # scipy.misc.imresize(img, crop_shape, interp='nearest') | |
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] | |
return new_img | |
def rot_aa(aa, rot): | |
"""Rotate axis angle parameters.""" | |
# pose parameters | |
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], | |
[0, 0, 1]]) | |
# find the rotation of the body in camera frame | |
per_rdg, _ = cv2.Rodrigues(aa) | |
# apply the global rotation to the global orientation | |
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) | |
aa = (resrot.T)[0] | |
return aa | |
def flip_img(img): | |
"""Flip rgb images or masks. | |
channels come last, e.g. (256,256,3). | |
""" | |
img = np.fliplr(img) | |
return img | |
def flip_kp(kp): | |
"""Flip keypoints.""" | |
if len(kp) == 24: | |
flipped_parts = constants.J24_FLIP_PERM | |
elif len(kp) == 49: | |
flipped_parts = constants.J49_FLIP_PERM | |
kp = kp[flipped_parts] | |
kp[:, 0] = - kp[:, 0] | |
return kp | |
def flip_pose(pose): | |
"""Flip pose. | |
The flipping is based on SMPL parameters. | |
""" | |
flipped_parts = constants.SMPL_POSE_FLIP_PERM | |
pose = pose[flipped_parts] | |
# we also negate the second and the third dimension of the axis-angle | |
pose[1::3] = -pose[1::3] | |
pose[2::3] = -pose[2::3] | |
return pose | |
def denormalize_images(images): | |
images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1, 3, 1, 1) | |
images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1, 3, 1, 1) | |
return images | |
def read_img(img_fn): | |
# return pil_img.fromarray( | |
# cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB)) | |
# with open(img_fn, 'rb') as f: | |
# img = pil_img.open(f).convert('RGB') | |
# return img | |
if img_fn.endswith('jpeg') or img_fn.endswith('jpg'): | |
try: | |
with open(img_fn, 'rb') as f: | |
img = np.array(jpeg.JPEG(f).decode()) | |
except jpeg.JPEGRuntimeError: | |
# logger.warning('{} produced a JPEGRuntimeError', img_fn) | |
img = cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB) | |
else: | |
# elif img_fn.endswith('png') or img_fn.endswith('JPG') or img_fn.endswith(''): | |
img = cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB) | |
return img.astype(np.float32) | |
def generate_heatmaps_2d(joints, joints_vis, num_joints=24, heatmap_size=56, image_size=224, sigma=1.75): | |
''' | |
:param joints: [num_joints, 3] | |
:param joints_vis: [num_joints, 3] | |
:return: target, target_weight(1: visible, 0: invisible) | |
''' | |
target_weight = np.ones((num_joints, 1), dtype=np.float32) | |
target_weight[:, 0] = joints_vis[:, 0] | |
target = np.zeros((num_joints, heatmap_size, heatmap_size), dtype=np.float32) | |
tmp_size = sigma * 3 | |
# denormalize joint into heatmap coordinates | |
joints = (joints + 1.) * (image_size / 2.) | |
for joint_id in range(num_joints): | |
feat_stride = image_size / heatmap_size | |
mu_x = int(joints[joint_id][0] / feat_stride + 0.5) | |
mu_y = int(joints[joint_id][1] / feat_stride + 0.5) | |
# Check that any part of the gaussian is in-bounds | |
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] | |
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] | |
if ul[0] >= heatmap_size or ul[1] >= heatmap_size \ | |
or br[0] < 0 or br[1] < 0: | |
# If not, just return the image as is | |
target_weight[joint_id] = 0 | |
continue | |
# # Generate gaussian | |
size = 2 * tmp_size + 1 | |
x = np.arange(0, size, 1, np.float32) | |
y = x[:, np.newaxis] | |
x0 = y0 = size // 2 | |
# The gaussian is not normalized, we want the center value to equal 1 | |
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
# Usable gaussian range | |
g_x = max(0, -ul[0]), min(br[0], heatmap_size) - ul[0] | |
g_y = max(0, -ul[1]), min(br[1], heatmap_size) - ul[1] | |
# Image range | |
img_x = max(0, ul[0]), min(br[0], heatmap_size) | |
img_y = max(0, ul[1]), min(br[1], heatmap_size) | |
v = target_weight[joint_id] | |
if v > 0.5: | |
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ | |
g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
return target, target_weight | |
def generate_part_labels(vertices, faces, cam_t, neural_renderer, body_part_texture, K, R, part_bins): | |
batch_size = vertices.shape[0] | |
body_parts, depth, mask = neural_renderer( | |
vertices, | |
faces.expand(batch_size, -1, -1), | |
textures=body_part_texture.expand(batch_size, -1, -1, -1, -1, -1), | |
K=K.expand(batch_size, -1, -1), | |
R=R.expand(batch_size, -1, -1), | |
t=cam_t.unsqueeze(1), | |
) | |
render_rgb = body_parts.clone() | |
body_parts = body_parts.permute(0, 2, 3, 1) | |
body_parts *= 255. # multiply it with 255 to make labels distant | |
body_parts, _ = body_parts.max(-1) # reduce to single channel | |
body_parts = torch.bucketize(body_parts.detach(), part_bins, right=True) # np.digitize(body_parts, bins, right=True) | |
# add 1 to make background label 0 | |
body_parts = body_parts.long() + 1 | |
body_parts = body_parts * mask.detach() | |
return body_parts.long(), render_rgb | |
def generate_heatmaps_2d_batch(joints, num_joints=24, heatmap_size=56, image_size=224, sigma=1.75): | |
batch_size = joints.shape[0] | |
joints = joints.detach().cpu().numpy() | |
joints_vis = np.ones_like(joints) | |
heatmaps = [] | |
heatmaps_vis = [] | |
for i in range(batch_size): | |
hm, hm_vis = generate_heatmaps_2d(joints[i], joints_vis[i], num_joints, heatmap_size, image_size, sigma) | |
heatmaps.append(hm) | |
heatmaps_vis.append(hm_vis) | |
return torch.from_numpy(np.stack(heatmaps)).float().to('cuda'), \ | |
torch.from_numpy(np.stack(heatmaps_vis)).float().to('cuda') | |
def get_body_part_texture(faces, model_type='smpl', non_parametric=False): | |
if model_type == 'smpl': | |
n_vertices = 6890 | |
segmentation_path = 'data/smpl_vert_segmentation.json' | |
if model_type == 'smplx': | |
n_vertices = 10475 | |
segmentation_path = 'data/smplx_vert_segmentation.json' | |
with open(segmentation_path, 'rb') as f: | |
part_segmentation = json.load(f) | |
# map all vertex ids to the joint ids | |
joint_names = get_smpl_joint_names() | |
smplx_extra_joint_names = ['leftEye', 'eyeballs', 'rightEye'] | |
body_vert_idx = np.zeros((n_vertices), dtype=np.int32) - 1 # -1 for missing label | |
for i, (k, v) in enumerate(part_segmentation.items()): | |
if k in smplx_extra_joint_names and model_type == 'smplx': | |
k = 'head' # map all extra smplx face joints to head | |
body_joint_idx = joint_names.index(k) | |
body_vert_idx[v] = body_joint_idx | |
# pare implementation | |
# import joblib | |
# part_segmentation = joblib.load('data/smpl_partSegmentation_mapping.pkl') | |
# body_vert_idx = part_segmentation['smpl_index'] | |
n_parts = 24. | |
if non_parametric: | |
# reduce the number of body_parts to 14 | |
# by mapping some joints to others | |
n_parts = 14. | |
joint_mapping = map_smpl_to_common() | |
for jm in joint_mapping: | |
for j in jm[0]: | |
body_vert_idx[body_vert_idx==j] = jm[1] | |
vertex_colors = np.ones((n_vertices, 4)) | |
vertex_colors[:, :3] = body_vert_idx[..., None] | |
vertex_colors = color.to_rgba(vertex_colors) | |
vertex_colors = vertex_colors[:, :3]/255. | |
face_colors = vertex_colors[faces].min(axis=1) | |
texture = np.zeros((1, faces.shape[0], 1, 1, 3), dtype=np.float32) | |
# texture[0, :, 0, 0, :] = face_colors[:, :3] / n_parts | |
texture[0, :, 0, 0, :] = face_colors[:, :3] | |
vertex_colors = torch.from_numpy(vertex_colors).float() | |
texture = torch.from_numpy(texture).float() | |
return vertex_colors, texture | |
def get_default_camera(focal_length, img_h, img_w, is_cam_batch=False): | |
if not is_cam_batch: | |
K = torch.eye(3) | |
K[0, 0] = focal_length | |
K[1, 1] = focal_length | |
K[2, 2] = 1 | |
K[0, 2] = img_w / 2. | |
K[1, 2] = img_h / 2. | |
K = K[None, :, :] | |
R = torch.eye(3)[None, :, :] | |
else: | |
bs = focal_length.shape[0] | |
K = torch.eye(3)[None, :, :].repeat(bs, 1, 1) | |
K[:, 0, 0] = focal_length[:, 0] | |
K[:, 1, 1] = focal_length[:, 1] | |
K[:, 2, 2] = 1 | |
K[:, 0, 2] = img_w / 2. | |
K[:, 1, 2] = img_h / 2. | |
R = torch.eye(3)[None, :, :].repeat(bs, 1, 1) | |
return K, R | |
def read_exif_data(img_fname): | |
import PIL.Image | |
import PIL.ExifTags | |
img = PIL.Image.open(img_fname) | |
exif_data = img._getexif() | |
if exif_data == None: | |
return None | |
exif = { | |
PIL.ExifTags.TAGS[k]: v | |
for k, v in exif_data.items() | |
if k in PIL.ExifTags.TAGS | |
} | |
return exif |