|
import warnings |
|
import torch |
|
import gradio as gr |
|
import librosa |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
warnings.filterwarnings("ignore") |
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") |
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") |
|
|
|
def transcribe_audio(audio_path): |
|
try: |
|
|
|
audio, sr = librosa.load(audio_path, sr=16000) |
|
|
|
input_values = processor(audio, return_tensors='pt', sampling_rate=sr).input_values |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcriptions = processor.batch_decode(predicted_ids)[0] |
|
return transcriptions |
|
except Exception as e: |
|
return str(e) |
|
|
|
demo = gr.Interface( |
|
fn=transcribe_audio, |
|
inputs=gr.Audio(type='filepath'), |
|
outputs='text', |
|
title="Subtitle Generator", |
|
description="This tool transcribes audio files into text" |
|
) |
|
demo.launch() |
|
|