abuhijleh commited on
Commit
a07549e
·
0 Parent(s):

Initial commit: Sentiment Analysis App with clean history

Browse files
Files changed (4) hide show
  1. .gitignore +24 -0
  2. README.md +13 -0
  3. app.py +34 -0
  4. requirements.txt +2 -0
.gitignore ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python virtual environment
2
+ venv/
3
+
4
+ # Python bytecode
5
+ __pycache__/
6
+ *.py[cod]
7
+ *$py.class
8
+
9
+ # Distribution / packaging
10
+ dist/
11
+ build/
12
+ *.egg-info/
13
+
14
+ # IDE specific files
15
+ .idea/
16
+ .vscode/
17
+ *.swp
18
+ *.swo
19
+
20
+ # Environment variables
21
+ .env
22
+
23
+ # Distribution / packaging
24
+ .DS_Store
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Text Sentiment Analysis
2
+
3
+ This is a simple sentiment analysis application built with Gradio and TextBlob. It analyzes the sentiment of input text and provides:
4
+ - Polarity score (-1 to 1, where -1 is negative and 1 is positive)
5
+ - Subjectivity score (0 to 1, where 0 is objective and 1 is subjective)
6
+ - Overall assessment (positive, negative, or neutral)
7
+
8
+ ## Usage
9
+ Simply enter any text in the input box and the application will analyze its sentiment.
10
+
11
+ ## Technologies Used
12
+ - Gradio for the web interface
13
+ - TextBlob for sentiment analysis
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from textblob import TextBlob
3
+
4
+ def sentiment_analysis(text: str) -> dict:
5
+ """
6
+ Analyze the sentiment of the given text.
7
+
8
+ Args:
9
+ text (str): The text to analyze
10
+
11
+ Returns:
12
+ dict: A dictionary containing polarity, subjectivity, and assessment
13
+ """
14
+ blob = TextBlob(text)
15
+ sentiment = blob.sentiment
16
+
17
+ return {
18
+ "polarity": round(sentiment.polarity, 2), # -1 (negative) to 1 (positive)
19
+ "subjectivity": round(sentiment.subjectivity, 2), # 0 (objective) to 1 (subjective)
20
+ "assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
21
+ }
22
+
23
+ # Create the Gradio interface
24
+ demo = gr.Interface(
25
+ fn=sentiment_analysis,
26
+ inputs=gr.Textbox(placeholder="Enter text to analyze..."),
27
+ outputs=gr.JSON(),
28
+ title="Text Sentiment Analysis",
29
+ description="Analyze the sentiment of text using TextBlob"
30
+ )
31
+
32
+ # Launch the interface and MCP server
33
+ if __name__ == "__main__":
34
+ demo.launch(mcp_server=True)
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ gradio[mcp]
2
+ textblob