|
import os |
|
import math |
|
|
|
import gradio as gr |
|
|
|
|
|
def make_chatbots(output_label0, output_label0_model2, **kwargs): |
|
visible_models = kwargs['visible_models'] |
|
all_models = kwargs['all_models'] |
|
|
|
text_outputs = [] |
|
chat_kwargs = [] |
|
for model_state_locki, model_state_lock in enumerate(kwargs['model_states']): |
|
if os.environ.get('DEBUG_MODEL_LOCK'): |
|
model_name = model_state_lock["base_model"] + " : " + model_state_lock["inference_server"] |
|
else: |
|
model_name = model_state_lock["base_model"] |
|
output_label = f'h2oGPT [{model_name}]' |
|
min_width = 250 if kwargs['gradio_size'] in ['small', 'large', 'medium'] else 160 |
|
chat_kwargs.append(dict(label=output_label, elem_classes='chatsmall', |
|
height=kwargs['height'] or 400, min_width=min_width, |
|
show_copy_button=kwargs['show_copy_button'], |
|
visible=kwargs['model_lock'] and (visible_models is None or |
|
model_state_locki in visible_models or |
|
all_models[model_state_locki] in visible_models |
|
))) |
|
|
|
|
|
if visible_models: |
|
len_visible = len(visible_models) |
|
else: |
|
len_visible = len(kwargs['model_states']) |
|
if kwargs['model_lock_columns'] == -1: |
|
kwargs['model_lock_columns'] = len_visible |
|
if kwargs['model_lock_columns'] is None: |
|
kwargs['model_lock_columns'] = 3 |
|
|
|
ncols = kwargs['model_lock_columns'] |
|
if kwargs['model_states'] == 0: |
|
nrows = 0 |
|
else: |
|
nrows = math.ceil(len_visible / kwargs['model_lock_columns']) |
|
|
|
if kwargs['model_lock_columns'] == 0: |
|
|
|
pass |
|
elif nrows <= 1: |
|
with gr.Row(): |
|
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']): |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
elif nrows == kwargs['model_states']: |
|
with gr.Row(): |
|
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']): |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
elif nrows == 2: |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii >= len_visible / 2: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii < len_visible / 2: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
elif nrows == 3: |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii >= 1 * len_visible / 3: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii < 1 * len_visible / 3 or mii >= 2 * len_visible / 3: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii < 2 * len_visible / 3: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
elif nrows >= 4: |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii >= 1 * len_visible / 4: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii < 1 * len_visible / 4 or mii >= 2 * len_visible / 4: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii < 2 * len_visible / 4 or mii >= 3 * len_visible / 4: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
with gr.Row(): |
|
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): |
|
if mii < 3 * len_visible / 4: |
|
continue |
|
text_outputs.append(gr.Chatbot(**chat_kwargs1)) |
|
|
|
with gr.Row(): |
|
text_output = gr.Chatbot(label=output_label0, visible=not kwargs['model_lock'], height=kwargs['height'] or 400) |
|
text_output2 = gr.Chatbot(label=output_label0_model2, |
|
visible=False and not kwargs['model_lock'], height=kwargs['height'] or 400) |
|
return text_output, text_output2, text_outputs |
|
|