Spaces:
Paused
Paused
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| from timeit import default_timer as timer | |
| from data_setups import audio_preprocess, resample | |
| import gdown | |
| url = 'https://drive.google.com/uc?id=1X5CR18u0I-ZOi_8P0cNptCe5JGk9Ro0C' | |
| output = 'piano.wav' | |
| gdown.download(url, output, quiet=False) | |
| url = 'https://drive.google.com/uc?id=1W-8HwmGR5SiyDbUcGAZYYDKdCIst07__' | |
| output= 'torch_efficientnet_fold2_CNN.pth' | |
| gdown.download(url, output, quiet=False) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| SAMPLE_RATE = 44100 | |
| AUDIO_LEN = 2.90 | |
| model = torch.load("torch_efficientnet_fold2_CNN.pth", map_location=torch.device('cpu')) | |
| LABELS = [ | |
| "Cello", "Clarinet", "Flute", "Acoustic Guitar", "Electric Guitar", "Organ", "Piano", "Saxophone", "Trumpet", "Violin", "Voice" | |
| ] | |
| example_list = [ | |
| ["piano.wav"] | |
| ] | |
| def predict(audio_path): | |
| start_time = timer() | |
| wavform, sample_rate = torchaudio.load(audio_path) | |
| wav = resample(wavform, sample_rate, SAMPLE_RATE) | |
| if len(wav) > int(AUDIO_LEN * SAMPLE_RATE): | |
| wav = wav[:int(AUDIO_LEN * SAMPLE_RATE)] | |
| else: | |
| print(f"input length {len(wav)} too small!, need over {int(AUDIO_LEN * SAMPLE_RATE)}") | |
| return | |
| img = audio_preprocess(wav, SAMPLE_RATE).unsqueeze(0) | |
| model.eval() | |
| with torch.inference_mode(): | |
| pred_probs = torch.softmax(model(img), dim=1) | |
| pred_labels_and_probs = {LABELS[i]: float(pred_probs[0][i]) for i in range(len(LABELS))} | |
| pred_time = round(timer() - start_time, 5) | |
| return pred_labels_and_probs, pred_time | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.Audio(type="filepath"), | |
| outputs=[gr.Label(num_top_classes=11, label="Predictions"), | |
| gr.Number(label="Prediction time (s)")], | |
| examples=example_list, | |
| cache_examples=False | |
| ) | |
| demo.launch(debug=False) |