|
import numpy as np |
|
import torch |
|
import matplotlib.pyplot as plt |
|
from scipy import linalg |
|
import os |
|
from tqdm import tqdm |
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
Stable version by Dougal J. Sutherland. |
|
Params: |
|
-- mu1 : Numpy array containing the activations of a layer of the |
|
inception net (like returned by the function 'get_predictions') |
|
for generated samples. |
|
-- mu2 : The sample mean over activations, precalculated on an |
|
representative data set. |
|
-- sigma1: The covariance matrix over activations for generated samples. |
|
-- sigma2: The covariance matrix over activations, precalculated on an |
|
representative data set. |
|
Returns: |
|
-- : The Frechet Distance. |
|
""" |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, \ |
|
'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, \ |
|
'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ('fid calculation produces singular product; ' |
|
'adding %s to diagonal of cov estimates') % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError('Imaginary component {}'.format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) |
|
+ np.trace(sigma2) - 2 * tr_covmean) |
|
|
|
def calculate_activation_statistics(data): |
|
"""Calculation of the statistics used by the FID. |
|
Params: |
|
-- files : List of image files paths |
|
-- model : Instance of inception model |
|
-- batch_size : The images numpy array is split into batches with |
|
batch size batch_size. A reasonable batch size |
|
depends on the hardware. |
|
-- dims : Dimensionality of features returned by Inception |
|
-- device : Device to run calculations |
|
-- num_workers : Number of parallel dataloader workers |
|
Returns: |
|
-- mu : The mean over samples of the activations of the pool_3 layer of |
|
the inception model. |
|
-- sigma : The covariance matrix of the activations of the pool_3 layer of |
|
the inception model. |
|
""" |
|
mu = np.mean(data, axis=0) |
|
sigma = np.cov(data, rowvar=False) |
|
return mu, sigma |
|
|
|
def calculate_diversity(data, first_indices, second_indices): |
|
diversity = 0 |
|
|
|
d = torch.FloatTensor(data) |
|
|
|
for first_idx, second_idx in zip(first_indices, second_indices): |
|
diversity += torch.dist(d[first_idx, :], d[second_idx, :]) |
|
|
|
diversity /= len(first_indices) |
|
return diversity |
|
|
|
d = np.load("feature.npy", allow_pickle=True)[()] |
|
|
|
d0 = d["train_data"] |
|
d1 = d["test_data"] |
|
d2 = d["gen_T5"] |
|
d3 = d["gen_GRU_T5"] |
|
d4 = d["LSTM_Des"] |
|
d5 = d["gen"] |
|
|
|
Mean, Std = np.mean(d0, 0), np.std(d0, 0) |
|
d0 = [(v - Mean[None, :]) / Std[None, :] for v in d0] |
|
d1 = [(v - Mean[None, :]) / Std[None, :] for v in d1] |
|
d2 = [(v - Mean[None, :]) / Std[None, :] for v in d2] |
|
d3 = [(v - Mean[None, :]) / Std[None, :] for v in d3] |
|
d4 = [(v - Mean[None, :]) / Std[None, :] for v in d4] |
|
d5 = [(v - Mean[None, :]) / Std[None, :] for v in d5] |
|
|
|
if not os.path.exists("viz"): |
|
os.mkdir("viz") |
|
|
|
|
|
d0 = np.array([v.flatten() for v in d0]) |
|
d1 = np.array([v.flatten() for v in d1]) |
|
d2 = np.array([v.flatten() for v in d2]) |
|
d3 = np.array([v.flatten() for v in d3]) |
|
d4 = np.array([v.flatten() for v in d4]) |
|
d5 = np.array([v.flatten() for v in d5]) |
|
|
|
print("Diversity") |
|
|
|
diversity_times = 10000 |
|
num_motions = len(d1) |
|
first_indices = np.random.randint(0, num_motions, diversity_times) |
|
second_indices = np.random.randint(0, num_motions, diversity_times) |
|
|
|
print(calculate_diversity(d1, first_indices, second_indices)) |
|
print(calculate_diversity(d2, first_indices, second_indices)) |
|
print(calculate_diversity(d3, first_indices, second_indices)) |
|
print(calculate_diversity(d4, first_indices, second_indices)) |
|
print(calculate_diversity(d5, first_indices, second_indices)) |
|
|
|
print("Diversity with action label") |
|
|
|
d = np.load("data.npy", allow_pickle=True)[()] |
|
|
|
label = dict() |
|
for i in range(6): |
|
label[i] = [] |
|
for i in range(len(d['test_label'])): |
|
label[d['test_label'][i]].append(i) |
|
|
|
diversity_times = 1000 |
|
first_indices = [] |
|
second_indices = [] |
|
for i in range(6): |
|
idx = np.random.randint(0, len(label[i]), diversity_times) |
|
for j in idx: |
|
first_indices.append(label[i][j]) |
|
idx = np.random.randint(0, len(label[i]), diversity_times) |
|
for j in idx: |
|
second_indices.append(label[i][j]) |
|
|
|
import random |
|
print(random.shuffle(second_indices)) |
|
|
|
print(calculate_diversity(d1, first_indices, second_indices)) |
|
print(calculate_diversity(d2, first_indices, second_indices)) |
|
print(calculate_diversity(d3, first_indices, second_indices)) |
|
print(calculate_diversity(d4, first_indices, second_indices)) |
|
print(calculate_diversity(d5, first_indices, second_indices)) |
|
|
|
|
|
print("FID with training") |
|
|
|
mu0, sigma0 = calculate_activation_statistics(d0) |
|
mu1, sigma1 = calculate_activation_statistics(d1) |
|
mu2, sigma2 = calculate_activation_statistics(d2) |
|
mu3, sigma3 = calculate_activation_statistics(d3) |
|
mu4, sigma4 = calculate_activation_statistics(d4) |
|
mu5, sigma5 = calculate_activation_statistics(d5) |
|
|
|
print(calculate_frechet_distance(mu0, sigma0, mu1, sigma1)) |
|
print(calculate_frechet_distance(mu0, sigma0, mu2, sigma2)) |
|
print(calculate_frechet_distance(mu0, sigma0, mu3, sigma3)) |
|
print(calculate_frechet_distance(mu0, sigma0, mu4, sigma4)) |
|
print(calculate_frechet_distance(mu0, sigma0, mu5, sigma5)) |